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FUNDAMENTALS OF DISCRETE
MATHEMATICS

Unit Structure :

1.0 Objectives
1.1 Introduction
1.2 Sets and Subsets

1.2.1 Sets
1.2.2 Some basic definitions

1.3 Operation on sets
1.3.1 Basic definitions
1.3.2 Algebraic properties of set operations
1.3.3 Principle of Inclusion-Exclusion

1.4 Let us sum up
1.5 References for further reading
1.6 Unit end exercise

1.0 OBJECTIVES

After going through this chapter you will be able to :

 Understand basic tools of discrete mathematics like sets.

 Understand different type of sets.

 Understand different operation on sets.

 Principle of Inclusion- Exclusion.

 Solve different examples on sets, and principle of Inclusion-
Exclusion etc.

1.1 INTRODUCTION

Sets are one of the most fundamental concepts in
mathematics. It was invented at the end of the 19th century. It is
seen as the foundation from which all of the mathematics can be
derived. Concept of division of Integers is fundamental to computer
arithmetic. Mathematical structures are useful in Number theory.
Number theory plays an important role in Computer and Internet
security.
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1.2 SETS AND SUBSETS

1.2.1 Sets

A set is any well defined collection of distinct objects.
Objects could be fans in a class room, numbers, books etc.

For example, collection of fans in a class room collection of
all people in a state etc. Now, consider the example, collection of
brave people in a class. Is it a set? The answer is no because brave
is a relative word and it varies from person to person so it is not a
set.

Note : Well-defined means that it is possible to decide whether a
given object belongs to given collection or not.

Objects of a set are called as elements of the set. Sets are
denoted by capital letters such as A, B, C etc and elements are
denoted by small letters x, y, z etc.

If x is an element of set A then we write Ax and if x is not
an element of A then we write Ax .

There are two ways to represent a set one way by listing all
the elements of a set separated by a comma enclosed in braces.
Another way of specifying the elements of a set is to give a rule for
set membership.

For example,  A = e, t, a can be written as

 A = | is a letter in the word 'eat'x x

We have following Basic sets of numbers.

(a)  = set of all Natural numbers.
=  1, 2, 3,......

(b)  = set of all whole numbers
=  0, 1, 2, 3, ......

(c)  = set of all Integers
=  ...., – 2, –1, 0,1, 2, 3,......

(d)  = set of all rational numbers.

=
p

/p, q q 0
q

 
  

 
,

(e)  = set of all real numbers.
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1.2.2 Some Basic Definitions –

(a) Empty Set : A set without any element. It is denoted by  or { }

For examples,

 B = | and =x x x 1 

 C = | and +1 = 1 =x x x 

(b) Equal Sets :- Two sets A and B are said to be equal if they have
same elements and we write A = B.

For examples,
(1)  A = is a letter in the word 'ate'|x x

 B = y | y is a letter in the word 'eat'

A = B

(2)    2X = –3,3 and Y = | = 9, x x x

i.e. X = Y

(c) Subset :- Set A is said to be a subset of B if every element of A
is an element of B and this is denoted by A B or B A  . If A
is not a subset of B we write A B .

For example,

(1)    A = 1 , B = | = 1   2 ,x x x then A B and B A 

(2)        

Note : (1) Every set A is a subset of itself i.e. A A

(2) If A B but A B then we say A is a proper subset
of B and we write A B . If A is not a proper subset
of B then we write A B .

(3) A for any set ‘A’

(4) A = B iff A B and B A

(d) Finite Set :- A set A with ‘n’ distinct elements,  n is called

as a finite set.

For example,
(1)  A = | 5 20   ,x x x

(2)  B = y | y is a hair on some ones head
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(e) Infinite Set :- A set which is not finite is Infinite.

For example,
(1)  A = | ,1 2  x x x

(2) 
(3) 

Note :  is finite.

(f) Cardinality of a set :- The number of elements in a set is called
as cardinality of a set and it is denoted by n(A) or |A|.

For example,
(1) A = {1, 2, 3, 4, 5}, |A| = 5
(2) B =  , |B| = 0

(g) Power set :- Let A be a given set. Then set of all possible
subsets of A is called as a power set of ‘A’. it is denoted by
P(A).

For example,
(1) A = {1, 2}

P(A) = { , {1}, {2}, {1, 2}}

Note : (1) If |A| = m then |P(A)| = 2m

(h) Universal set :- Any larger set which contains some subsets is a
universal set. It is denoted by U.

For example,

(1)  contains  ,  ,  and  .

  is a universal set for  ,  ,  and  . Similarly, is

universal set for and  and so on.

(2) A CPU consist of hard disk, RAM, ROM, Sound Card etc. It
can be treated as a universal set.

(i) Venn diagram :- A pictorial representation of a set is called as
Venn diagram. Elements of a set are denoted by dots enclosed in
a triangle, a square or a circle.
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For example,
(1) A = {a, b, d} (2) B = {5, 6, 7}

A
a

b
d

5
6 7

B

Fig. 1.1 Fig. 1.2

Check your progress :

1. Identify each of the following as true or false.
(a) A = A (b) AA (c) AA (d) A

(e) A (f) If A {1} then P(A) = { , A}

2. If A = { , y, 3x }, then find (a) P(A), (b) |A| (c) |P(A)|

3. Which of the following are empty sets?
(a)  | ,1 2   x x x

(b)  | , = –1  2x x x

(c)  | , +1= 1 x x x

(d)  | , = 3 2x x x

4. Draw the Venn diagram for         .

1.3 OPERATION ON SETS

1.3.1 Basic definitions :

(a) Union of two sets :- Let A and B be two given sets. Union of A
and B is the set consisting of all elements that belong to ‘A’ or
‘B’ and it is denoted by A B .  A B = | A or B     x x x

For example,
(1) A =    , , B = 2, 5 y z ,x

 A B = , y, z, 2, 5 x

(2) A = B = ,

   A B = = 1, 2, 3, ..... ..... , – 2, –1, 0,1, 2, ....   

=  ....., – 2, –1, 0,1, 2, .... = 
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Note : (1) If A B then A B = B

(2) A A = A

(3) A = A

A B

Fig. 1.3

(b) Intersection of two sets :- Let A and B be two given sets.
Intersection of A and B is the set consisting of the elements
Present in A and B. (i.e. in both) and it is denoted by A B .

 A B = | A and B  x x x

For example,
(1) A = {1, 2, 3}, B = {2, 4, 5} then  A B = 2

(2) A = {1, 2, 3} and B = { ,x y } then A B =  such sets whose

intersection is empty is called as disjoint sets.

Note : (1) A A = A

(2) If A B then A B = A

(3) A = 

(4) Shaded region represents A B (5) Disjoint sets

A B

U
A B

U

Fig. 1.4 Fig. 1.5

Definition for union and Intersection can be extended to ‘n’
number of sets. ( n )

(c) Complement of a set :- Let U be a given universal set and let A
be any subset of U. Then complement of a set A in U is set of
those elements which are present in U but not in A and it is

denoted by cA or A’ or A .

i.e.  cA = | A & U x x x

Shaded region represents A B .(4)
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For example,

(1) If A =  and U =  then  cA = 0 but if U = then

 cA = ...., – 2, – 1, 0 i.e. complement of a set depends on U.

A

U
Ac

Fig. 1.6

Shaded region is cA .

(d) Complement of A with respect to ‘B’ is the set of all elements in
B which are not in A and it is denoted by A – B or A\ B .
i.e.  A – B = | A and B  x x x

Similarly, we can define B – A.

For example,
(1) A = {1, 2, 3} and B = {3, 4, 5}

A – B = {1, 2} and B – A= {4, 5}

(2) A = {1, 2} and B = {3, 4}
A – B = A and B – A = B

A B

U

A B

U

Fig. 1.7 Fig. 1.8

A – B B – A

(e) Symmetric difference of two sets :- Symmetric difference of two
sets A and B is the set of elements present in A or in B but not
both and it is denoted by    A B = A – B B – A  .

U

A + B
Fig. 1.9
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Check your progress :

1. If A = U ( U – universal set), then (a) cA , (b) A U\ , (c) U A \ ,
(d) A U

2. If U  = | and 17 x x x and A = {1, 3, 5, 6}, B = {3, 4, 7,

5, 8}, then (a) cA , (b) A\B, (c) B\A, (d) A B , (e) cB , (f) A B ,

(g) A B .

1.3.2 Algebraic Properties of set operations

Like Algebraic properties of Real numbers, sets also satisfy
some Algebraic Properties with respect to the operations union,
intersection etc.

(I) Commutative Properties
(1) A B = B A 

(2) A B = B A 

(II)Associative Properties

(3)    A B C = A B C   

(4)    A B C A B C   =

(III) Distributive Properties

(5)      A B C = A B A C    

(6)      A B C = A B A C    

(IV) Idempotent Properties

(7) A A = A

(8) A A = A

(V) Properties of Complement

(9)  A = A

(10) A A = U

(11) A A = 

(12) = U

(13) U = 

(14) A B A B =

(15) A B A B =
(De Morgan’s laws)
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Properties (1) to (13) can be proved easily. We will prove (14) and
(15) here.

(14) A B = A B 

Proof :   A B = | A B and U  x x x

=     | A and U and B and U   x x x x x

=  | A and B x x x

= A B

Similarly, we can prove (15).

Example 1: Prove that i) ( ) ( )cA B A B A   and

ii) ( ) ( )cA B A B A   .

Solution: L.H.S.= ( ) ( )cA B A B  

= ( )cA B B  ( Distributive law)

= A  ( cB B  complement law)

= A

= R.H.S

Hence ( ) ( )cA B A B A   .

Similarly, we can prove ( ) ( )cA B A B A   .

Example 2: If U = {x\x is a natural number less than 20} is the
universal

set, A = {1, 3, 4, 5, 9}, B = {3, 5, 7, 9, 12}. Verify that
De Morgan’s laws.

Solution: De Morgan’s laws can be state as i) A B A B = ,

ii) A B A B = .

By listing method,
U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
and A = {1, 3, 4, 5, 9},

A = {2, 6, 7, 8, 10, 11, 12, 13,14,15,16,17,18,19},
and B = {3,5,7,9,12},

B = {1, 2, 4, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18,19}
A B = {1, 3, 4, 5, 7, 9, 12}

( )A B = {2, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19}

Also ( )A B = {2, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19}
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Hence A B A B = .

Now ( )A B = {3, 5, 9},

( )A B = {1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

Also ( )A B = { 1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19}

Hence A B A B = .

Example 3: If u={1,2,3,4,5,6,7,8,9,10,11,12} is the universal set.
A={2,3,5,8,10}, and
B={4,5,7,8,9,11}, find.

i). A-B, ii). B-A, iii). ( )A B .

Solution:- i). A-B={2,3,10}
ii). B-A={4,7,9,11}

iii). ( )A B ={1,4,5,6,7,8,9,11,12}.

1.3.3 Principle of Inclusion – Exclusion (The addition Principle)

Theorem (1) If A and B be two given finite sets, then we have

A B = A + B – A B  .

(1) Let A = {a, b, c, d} and B = {e, d, p, q}

 A B = {c, d}

i.e. |A| = 4, |B| = 4 and | A B | = 2

 By addition principle, A B = 4 + 4 – 2 = 6

Example 4: In a class of 50 students, 25 like Maths and 15 like
Physics, 10 like both Maths and Physics. So find (a) How many
like Maths or Physics? (b) How many do not like any or the
subjects?

Solution : Let m be the set of all those students who likes Maths and
‘p’ be the set of all those students who likes Physics.
 |M| = 25, |P| = 15 and |M P| = 10

(a) No. of students like atleast one subject

= M P = M + P – M P  (by Addition formula)

= 25 + 15 – 10
= 30

(b) No. of students do not like any of the two subject
= 50 – M P = 50 – 30 = 20

Above theorem can be extended to three sets, –
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Theorem :- If A, B and C be given finite sets, then

A B C = A + B + C – A B – B C – A C + A B C      

Example 5

In a survey of people it was found that 80 people knew
Maths, 60 knew physics, 50 knew chemistry, 30 new Maths and
Physics, 20 knew Physics and Chemistry, 15 knew Maths and
Chemistry and 10 knew all three subjects. How many people knew?

(a) At least one subject

(b) Maths only

(c) Physics only

(d) Maths and Chemistry only

Solution : Let M, P, C represents respectively, the set of students
knowing Maths, Physics and Chemistry.
 |M| = 80, |P| = 60, |C| = 50, M P = 30 , M C = 15 ,

P C = 20 , M P C = 10 

(a) By addition principle
M P C = M + P + C – M P – M C – P C + M P C      

= 80 + 60 + 50 – 30 – 15 – 20 + 10
= 135

Let’s draw the Venn diagram of above situation.

5 20 20

5
10

10

25

M P

C

Fig. 1.10

(b) Maths only = 80 – (20 + 10 + 5)
= 80 – 35
= 45

(c) Physics only = 60 – (20 + 10 + 10) = 20
(d) Maths and Chemistry only = 15 – 10 = 5

Example 6: Out of 150 residents a building, 105 speak Marathi, 75
speak Gujarati and 45 speak both Languages. Find the number of
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residents who do not speak either of the languages also find the
number of residents who speak only Marathi.

Solution:- Let A be the set of resident who speak Marathi.
B the set of resident who speak Gujarati
Given │U│=150
│A│=105
│B│=75
│A∩B│=45
By principal of Inclusion-Exclusion.
│AUB│=│A│+│B│-│A∩B│

= 105+75-45
=135.

i). Number of resident who do not speak either of language.
│(AUB)’│=│U│-│AUB│

=150-135
=15

ii). The number of resident who speak only Marathi
=│A│-│A∩B│
=105-45
=60.

Example 7: Out of 240 students in college 130 students are in
N.C.C. 110 are in N.S.S. and 80 are in other activity in this 40 are
N.C.C. and N.S.S both, 35 are N.C.C and other activity and 30 are
N.S.S. and other activity but 20 student are take part in all three.

Find the number of students takes part in
i). Atleast any one.
ii). None of them.
iii). Only N.S.S.
iv). Only other activity.
v). Only N.S.S and N.S.S but not in other activity.

Solution:- Let A be the set of N.S.S students.

B be the set of N.C.C students.

C be the set of other activity student.

Here │A│=130, │B│=110, │C│=80.

│A∩B│=40, │A∩C│=30, │B∩C│=35, │A∩B∩C│=20.

By principle Inclusion-Exclusion
i). atleast one of them i.e.│AUBUC│
│AUBUC│=│A│+│B│+│C│-│A∩B│-│B∩C│-
│A∩C│+│A∩B∩C│

=130+110+80-40-35-30+20
=235.
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ii). None of them i.e. │(AUBUC)’│
│(AUBUC)’│=│U│-│AUBUC│

=240-235
=5.

iii). Only N.S.S. i.e.
=│A│-│A∩B│ -│A∩C│+│A∩B∩C│
=130-40-30+20
=80.

iv). Only other activity i.e.
=│C│-│A∩C│-│B∩C│+│A∩B∩C│
=80-30-35+20
=35.

v). Only N.S.S and N.C.C. but not other activity i.e.
=│AUB│-│A∩B∩C│
=40-20
=20.

Example 8: Find the number of integers including both from 1 to
500 that are divisible by,
i). 2 or 3 or 5.
ii). 2 or 3 but not 5.
iii). Only by 5.

Solution:- Here U={1,2,3,…………,500}
A=the set of numbers in U divisible by 2.
B= the set of numbers in U divisible by 3.
C= the set of numbers in U divisible by 5.

│U│=250, │A│=
500

250
2

 
 
  

│B│=
500

166
3

 
 
  

│C│=
500

100
3

 
 
  

│AUB│=
500 500

83
2 3 6

   
    
      

│B∩C│=
500

33
15

 
 
  

│C∩A│=
500

50
2 5

 
 
  

│A∩B∩C│=
500 500

16
2 3 5 30
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i) AUBUC A B C A B B C A C A B C          

= 250+166+100-83-33-50+16
= 366.

ii). 2 or 3 but not by 5.
=│AUB│-│A∩B∩C│
=83-16
=67.

iii). Only by 5.
=│C│-│A∩C│-│B∩C│+│A∩B∩C│
=100-33-50+16
=33.

1.7 LET US SUM UP

This chapter consist of sets and different operations on sets
with different examples which helps in better understanding of the
concept and able to use in different areas. We saw the principle of
inclusion – Exclusion which can be used in different counting
problems we saw some concepts of number theory such as division
in Integers, sequence etc. which is useful in computer security. At
the end we saw definition of a mathematical structure and it is
different properties.

1.8 REFERENCES FOR FURTHER READING

a) Discrete structures by Liu.

b) Discrete mathematics its Application, Keneth H. Rosen TMG.

c) Discrete structures by B. Kolman HC Busby, S Ross PHI Pvt.
Ltd.

d) Discrete mathematics, schaum’s outlines series, seymour Lip
Schutz, Marc Lipson, TMG.

1.9 UNIT END EXERCISES

1. Let  2A = | and + 7 = 0x x x ,  B = |  ,x x

 C = | 0 0.2, < <x x x ,  | 6 ,D q qx x  

 E = | + 7 = 7,x x x

Check whether following are True or False.
(i) A is finite, (ii) B A , (iii) E = A , (iv) E A D ,
(v) C is infinite, (vi) B =  , (vii) A E , (viii) B C = A

2. Prove A – B = A – (A B)
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3. There are 250 students in a computer Institute of these 180
have taken a course in Pascal, 150 have taken a course in
C++, 120 have taken a course in Java. Further 80 have taken
Pascal and C++, 60 have taken C++ and Java, 40 have taken
Pascal and Java and 35 have taken all 3 courses. So find –

(a) How many students have not taken any course?

(b) How many study atleast one of the languages?

(c) How many students study only Java?

(d) How many students study Pascal and C++ but not Java?

(e) How many study only C++ and Java?
4. The students stay in hostel were asked whether they had a

textbook r a digest in their rooms. The results showed that

650 students had a textbook, 150 deed not have a textbook,

175 had a digest and 50 had neither a textbook nor a digest.

Find, i). the number of students in hostel , ii).How many have

a textbook and digest both, iii). How many have only a digest.

5. Prove that (Bc∩U)∩(AcU )=(AUB)c.

6. Prove that , i).AU(A∩B)=A, ii). A∩(AUB)=A.

7. In a survey of 80 people in Gokuldham 50 of them drink Tea,

40 of them drink Coffee and 20 drink both tea and coffee.

Find the number of people who take atleast one of the two

drinks also find the number of students who do not take tea or

Coffee.

8. In a survey of 60 people, It was found that 25 read magazine.

26 read Times of India and 26 read DNA. Also 9 read both

magazine and DNA, 11 read both magazine and times of

India , 8 read times of India and DNA and 8 are not reading

anything.

i). Find the number of people who read all three.

ii). Draw a Vann diagram.

iii). Determine the number of people who read exactly one

magazine.
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2

LOGIC

Unit Structure :

2.0 Objectives

2.1 Propositions and Logical Operations

2.1.1 Logical connectives and compound statements

2.1.2 Negations

2.1.3 Conjunction

2.1.4 Disjunction

2.2 Conditional Statements

2.2.1 Quantifiers

2.2.2 Bi-Conditional

2.3 Theorem

2.4 Mathematical Induction

2.5 Let us sum up

2.6 Unit End Exercise

2.0 OBJECTIVES

After going through this chapter you will be able to:

• Learn about the propositions related to Logical Operations.

• Learn about negations and various connectors like conjunction,
disjunction.

• Learn about Quantifiers and Conditional and bi-conditional
statements.

• Solve problems using the method of Mathematical Induction.

2.1 PROPOSITIONS AND LOGICAL OPERATIONS

The statement in English need not always be true or false
whereas a statement in Logic is a declarative sentence which is
either true or false but not both. Identify the statements among the
following sentences.
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1. It will rain today.....
2. Mumbai is capital city of Maharashtra.
3. Do you know where is Vijay ?
4. 2 × 3 − 5 = 1.

5. 2x − 1 = 4.
6. Come in!

In above, sentences (1), (2) and (4) are statements. (3) is not a
statement as it is question,(5) is declarative but depending upon the
value of x it is true or false. Sentence (6) is a command and hence
not a statement.

2.1.1 Logical connectives and compound statements.

Just as in mathematics variables x, y, z, ... can take real values
and can be combined by operations +,−,×,÷, in logic, the variables p,
q, r, .. can the replaced by statements. The variable p, q, r, .... are
called as propositional variables. For example we can write p : Sonia
Gandhi is president of India, q : Newton was a Physicist, r : It will
rain today. etc. One can combine propositional variables by logical
connectives to obtain more complex statements - compound
statement. For example suppose Q Mangoes are ripe, R : Oranges
are sour. The statement Q and R means Mangoes are ripe and orange
is sour. The truth value of compound statement depends on truth
values of statements which are combined and on the logical
connectives that are used. In this subsection, we will discuss most
commonly used logical connectives.

2.1.2 Negation :

Suppose P is any statement. Then negation of P, denoted
by p . Thus if P is true then p is false and vice a versa. A table

giving truth values of compound statement in terms of compound
parts is known as truth table.

p p

T
F

F
T

Strictly speaking not P is not compound statement as it is unary
operation.

Example 1 Give negation of
1. p: It is hot.

2. q: 2 is a divisor of 5.
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Solution :
1. ~P : It is not the case that it is hot i.e. it is not hot.
2. ~q: 2 is not divisor of 5. Since q is false, q is true.

2.1.3 Conjunction

The next operation is conjunction. If p and q are two
statement then conjunction of p and q is the compound statement “p
and q”. The notation is p q . The operation and is a binary

operation on the set of statements. The p q is true whenever both p

and q on true, false otherwise. Thus the truth table is given by

p q p q

T
T
F
F

T
F
T
F

T
F
F
F

Example 2 Form the conjunction of p and q.

1. p: I will drive my car q: I will reach the office in time.

2. p: 2 is even q: 11 is odd.

3. p: 2 + 3 + 1 = 6 q: 2 + 3 > 4

4. p: Delhi is capital of India q: Physics is a science subject.

Solution :
1. p q is “I will drive my car and I will reach office in time”.

2. “2 is even and 11 is odd”.
3. “2 + 3 + 1 = 6 and 2 + 3 > 4”.
4. “Delhi is capital of India and Physics a science subject”.

2.1.4 Disjunction

The second logical connective used is disjunction.
Disjunction of statements p and q is dented by p q ,which means p

or q. The statement p q is true where p or q or both are true and

is false only when both p and q are false.

The truth table for p q is as follows.

p q p q

T
T
F
F

T
F
T
F

T
T
T
F
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Example 3 Form the disjunction of

1. p: Bananaras is on the bank of holy river Ganga. q: Dehra Doon is
capital of Uttaranchal.

2. p: Eiffel tower is in London. q: Panama canal connects Atlantic
ocean with Pacific ocean.

3. p: Mukesh and Anil are sons of Industrialist Late Dhirubhai
Ambani. q: Rajbhavan is official residence of the Governor of
Maharashtra.

4. p: 3 is rational. q: -10 is odd integer

Solution :
The statement p q is given by

1. Banaras is on the bank of holy river Ganga or Dehradoon is
capital of Uttaranchal.

2. Eiffel Tower is in London or Panama canal connects Atlantic
ocean with Pacific ocean.

3. Mukesh and Anil are sons of late Industrialist Dhirubhai Ambani
or Rajbhavan is official residence of the Governor of
Maharashtra.

4. 3 is rational or - 10 is odd.

The statements 1, 2 and 3 are true whereas 4 is false since p
and q are both false.

Note that in logic we can join two totally unrelated sentences
while in English, we do not combine.

In mathematics or in Computer Science, connective or is used
in inclusive sense . That is p q is true if true if p is true or q is true

or both are true. Consider the statements p: 2 is a prime number and
q: 2 is composite. Here the composite statement p q is the

statement “2 is prime number or 2 is composite”. Since exactly one
of p and q can be true,  is used in exclusive sense.

A compound statement may have many Components each of

which is if self a statement.   p q p r   involves three

prepositions p, q and r. The prepositions p, q and r each may be

independently true of false. Hence there are in all 32 = 8 possibilities

in the truth table of   p q p r   . In general, if a statement

involves n propositional variable, then there will be 2n rows in its
truth table.
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Example 4 Make a truth table if    p q q   .

p q p q  q

T
T
F
F

T
F
T
F

T
T
T
F

F
T
F
F

F
T
F
F

2.2 CONDITIONAL STATEMENTS

Observe the following sentences that we use in day to day life:-

1. If it is very hot in summer then there is a chance of early
monsoon.

2. If I see you talking then I will give you a punishment.

3. If I am not in a good mood then I will go for swimming.

4. If I take stress then my blood pressure will increase.

Such sentences are called as conditional statements or implication.
In logic, a compound statement of the type “If p then q” is called as
conditional statement or implication. p is called as hypothesis or
antecedent and q is called as conclusion or consequent. The
notation for connective if then is denoted by: p q .

Example 5 Write implication for each of the following.

1. p: I have headache q: I will take aspirin.

2. p: I take a walk q: I will reach late.

3. p: 2 divides 10 q: Rajiv will go to movie.

Solution : p q in each of the case is given by

1. If I have a headache, then I will take Aspirin.

2. If I take a walk then I will be late.

3. If 2 divides 10 then Rajiv will go for a movie.

Note than in 1 and 2 given above, we are assuming that p is cause of
q. But in logic, p q means that if p is true then q will also be true.

Hence it is not possible to have p to be true and q is false. Thus
p q is false only when p is true and q is false. In all other

possibilities p q is always true.
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The truth table for p q is as follows.

p q p q

T
T
F
F

T
F
T
F

T
F
T
T

Example 6 Determine truth value of the following :

1. If 3 is even then India will win world cup football.

2. If 2 + 5 = 7 then Sonia Gandhi is the prime minister of India.

Solution:

1. This is true sine 3 is even is false. Note that when p is false, p 
q is always true for any q.

2. This is false because 2 + 5 = 7 is true and Sonia Gandhi is PM is
false.

In mathematics we say p implies q or if p then q, q if p, p is
sufficient for q or q is necessary for p. If p q is the implication ;

then the statement q p is called its converse which also is an

implication. The contra-positive statement of the implication p q

is the statement q p  .

Example 7 Give contra-positive and converse of the following
statements.

1. If I am hungry then I will eat.

2. If the three sides of a triangle are equal then each angle of the

triangle is of measure 060 .

3. If today is Sunday then I am going for a movie.

Solution

1. Let p be the statement I am hungry and q be the statement I will
eat. The converse is If I will eat then I am hungry while contra-
positive is the statement If I will not eat then I am not Hungry.

2. If each angle of a triangle is of measure 600 then the three sides of
the triangle are equal (Converse); If each angle of a triangle is not
of measure 600 then the triangle is not an isosceles (contra-
positive).
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3. If I go for a movie then it is Sunday (converse); If I do not go for a
movie then it is not a Sunday (contra-positive).

Example 8 : Translate each of the following in verbal language.
p: Hardwork.

q: Success.

(i) (~p) (~q), (ii). p~q, (iii). p→q, (iv). ~q→~p

Solution : (i). No hardwork and no success.
(ii). Hardwork but not success.

(iii). If there is hardwork then there is a success.

(iv). If no success then no hardwork.

2.2.1 Quantifiers

A set can some times be conveniently denoted as {x | P(x)}
which means that an element x is in the given set if it satisfies the
given property, P(x). For example the set  0, 2, 4, 6, ......    can be

described by {x | x is an even integer}. The sentence P(x) is called as
predicate or propositional function. Let A =  0, 2, 4, 6, ......    .

Then the sentence P(x) “x is an even integer”. Since P(2) is true, 2 

A while 1  A as P(1) is not true. The universal quantification of a
predicate P(x) is the sentence “for all values of x, P(x) is true” and
we write this as  x P(x). The symbol  is called as universal
quantifier. We now discuss few examples.

Example 8 (a) Suppose P(x): 2x + 1 is an odd number is a predicate
that is true for all real numbers x. Hence the sentence  x P(x) is
true. (b) Let

Q(x): 2x − 9 < 16. In this case  x Q(x) is not true since Q(10) is not
true.

A predicate may contain several variables and universal
quantification can be applied to each of them. For example
x y  z (xy)z = x(yz) means that the property that the
multiplication is associative is true for all real numbers x,y and z.

The existential quantification of a predicate P(x) is the
statement “there exist some value of x for which P(x) is true”. We
write this symbolically as x P(x). The symbol  is called as
existential quantifier. in English, x can also be described as ” there
is some x” “there is at least one value of x”.
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Example 9 Let x and y be any two real numbers.

(a) The statement xy x + y = y is true since real number 0 has
the property that 0 + y = y for all real numbers y.

(b) The statement  xy x + y = y is not true since for real number
1 there is no real number y such that 1 + y = y.

Let p:  x P(x). Then p will be false if there is at least one value of x
for which P(x) is false. Thus there is at least one value of x for which
P(x) is true. Thus p is false if x P(x) is true. Let q: x Q(x).
Then q is false if there does not exists any value of x for which Q(x)
is true i.e. for all values of x, Q(x) is true. Thus q is false if x
Q(x) is true.

Example 10
(a) Let p: For all integers n, 3n-7 a perfect square. Then p is the
statement. There exists at least one integer n for which 3n - 7 is not a
perfect square.

(b) Let q: there exists a real number x such that
2

2

1
2

1

x

x





. Then q

is the statement For all real numbers x ,
2

2

1
2

1

x

x





.

2.2.2 Bi-conditional

Bi-conditional or equivalence of two statements p and q means both
and andp q q p     is denoted by p q . The truth table of p q

is given below.

p q :r p q :s q p r s

T
T
F
F

T
F
T
F

T
F
T
T

T
T
F
T

T
F
F
T

Note that p q is true if either p, q are both true or both false.

Example 11 Compute the truth table of    p q q p   

p q p q p q q p     p q q p   

T T
T F
F T
F F

T
F
T
T

F
T
F
T

F
F
T
T

T
F
T
T

T
T
T
T
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Note that last column of the above table indicates that the statement

   p q q p    is always true. Such a statement is called as

Tautology. A statement that is always false is called as Contradiction
or absurdity. Any other statement is called as contingency.

Check Your Progress :
1) Translate each of the following in verbal language.

a) p: Teacher is present

q: student attend the class.

(i) p q , (ii) p q , (iii).p→q, (iv).p↔q, (v). q↔p

b) p: 2 is an even number.

q: 2 is a prime number.

r: 2+2=(2)2.
(i). p→q, ii). q→p, (iii). p→q, (iv). p→(q  r), (v). ~pq,
(vi). p~r, (vii). ~p→(~p~r).

2).Write down the following conditional statements in converse
contra positive and inverse.

a). If it is a Sunday then it is a holiday.
b). If the teacher is present then students are standing.
c). If you know mathematics them you know logc.

3) Which of the following statements are Tautology, Contradiction
or Contingency?

1.    q p q p   

2.    p q p q   

3. p p 

Similar to the mathematical structure [Sets, ,  ], one can

define a structure on set of proposition with the help of binary
operations ,  and  .

The operations for propositions have following properties
which we list as theorem. The proofs are very simple and hence are
left as an exercise to the reader.

2.3 THEOREM

A. Commutativity
(a) p q q p  

(b) p q q p  

B. Associativity
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(a)    p q r p q r    

(b)    p q r p q r    

C. Distributivity
(a)      p q r p q p r     

(b)      p q r p q p r     

D. Idempotent Property
(a) p p p 

(b) p p p 

E. Properties of negation
(a)  p p  

(b)      p q p q     

(c)      p q p q     

F. Properties of implication

(a)     p q q p    

(b)     p q p q   

(c)       p q p q p q       

(d)       p q p q q r    

Standard way of proving all the above properties is to
construct truth table. In some cases one can also use previous results.

2.4 MATHEMATICAL INDUCTION

We now use the ideas developed so far and demonstrate an
important technique of proof- Principle of mathematical induction
which is an indispensable proof technique, extensively used in
mathematics. Suppose P(n) is some statement or property or a
formula to be verified where n is an integer. We need to establish the
formula P(n) is true for all integers 0n n , where 0n is some fixed

integer. This can be achieved as follows. First we establish the
validity of ( )P n for n = 0n . This step is called as basis step. Next we

show that ( ) ( 1)P k P k  is a tautology i.e. assuming the

validity of P(k), we establish the validity of P(k + 1) for any integer
k ≥ 9n . This step is called as induction step. Usually some efforts

are required to prove induction step. We now use the induction
principle and prove many formulas, statements.
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Example 12 Prove that 1 + 2 + 3 + . . . . . . +
( 1)

, 1
2

n n
n n


  .

Solution: Let P(n) denote the formula 1 + 2 + 3 + . . . . . +
( 1)

,
2

n n
n


  . 1n  In this example, 0 1n  .

Basis step: For n = 1, left hand side of above formula is 1while the

right side is
1(1 1)

2


which also is 1. Thus the formula is true for n =

1 and we have proved the basis step.

Induction step: We now need to establish the validity of the
formula P(k+1) whenever P(k) is true for k ≥ 1. Let k ≥ 1 be any
integer for which P(k) is true. Thus the statement 1 + 2 + 3 +

…….
( 1)

2

k k
k


  . We now wish to prove 1 + 2 + 3 + ……. +

 
    1 1 1

1
2

k k
k

  
  . We can write the right hand side of this as

1 + 2 + 3 + …… + k + (k + 1). By induction step we know that 1 + 2

+ 3 +…….+
( 1)

2

k k
k


 .

Thus 1 + 2 + 3 + ……..
( 1)

( 1) ( 1).
2

k k
k k k


      This upon

straightforward simplification reduces to
( 1)( 2)

.
2

k k 
This is

precisely what we need to establish. We conclude by the principle of
mathematical induction that P(n) is true for all positive integers.

Example 13. Prove by the method of induction, that for all n N ,

1.2.3 + 2.3.4 + 3.4.5 +…..+ n (n + 1) (n + 2) =    1 2 3

4

n n n n     
.

Solution:- The result P(n) to be proved is, that for all n N

1.2.3 + 2.3.4 + 3.4.5 +…..+ n (n + 1) (n + 2) =    1 2 3

4

n n n n     
.

Step.1: For n = 1, L.H.S = 1.2.3 = 6 ;

R.H.S =
1,2,3,4

6
4



There for L.H.S = R.H.S for n = 1
There for P(1) is true

Step.2: Let us assume that for some k  N, P(k) is true.
That is, 1.2.3 + 2.3.4 + 3.4.5 + ………. + k (k + 1)

 
   1 2 3

2
4

k k k k
k

   
  …………………………………(I)
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Then to prove that P (k + 1) is true,
That is, to prove that
1.2.3 + 2.3.4 + 3.4.5 + ……….. + k (k + 1) (k + 2) + (k + 1) (k + 2)

 
    1 2 3 4

3
4

k k k k k
k

    
 

Here
L.H.S = [1.2.3 + 2.3.4 + 3.4.5 + ……+ k (k + 1) (k + 2) ] + (k + 1)
(k + 2) (k + 3)

=
   1 2 3

4

k k k k   
+ (k+1) (k + 2) (k + 3)…… [by (I).]

= (k + 1) (k + 2) (k + 3)

    1 2 3 4

4

k k k k k    


= R.H.S.
There for P (k + 1) is true.

There for by the principal of mathematical induction, the result P (n)
is true for all n ϕ N, that is, 1.2.3 + 2.3.4 + 3.4.5 + ……………+ n 

(n + 1) (n + 2) =    1 2 3

4

n n n n     
, for all n  N.

Example 14. Prove by the method of induction, that for all n  N ,

    
1 1 1 1

.....
3.5 5.7 7.9 2 1 2 3 3 2 3

n

n n n
    

  

Solution:- the result p (n) to be proved is that for all nN

    
1 1 1 1

.....
3.5 5.7 7.9 2 1 2 3 3 2 3

n

n n n
    

  

Step.1. For n=1 L.H.S =
1

3.5

R.H.S =
 

1 1

3 2 1 3 3.5


  

There for L.H.S = R.H.S for n=1 there for P(1) is true.

Step.2. Let us assume that for some kN, P (k) is true.

That is,
    

1 1 1 1
.....

3.5 5.7 7.9 2 1 2 3 3 2 3

k

k k k
    

  
.....(1)

Then to prove that P (k+2) is true,
That is to prove that
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1 1 1 1 1 1

.....
3.5 5.7 7.9 2 1 2 3 2 3 2 5 3 2 5

k

k k k k k


     

    

Here
L.H.S

     
1 1 1 1 1

.....
3.5 5.7 7.9 2 1 2 3 2 3 2 5k k k k

 
            

    
1

3 2 3 2 3 2 5

k

k k k
 

  
……………..………… [by (1)]

 

  

    

21 1 1 2 5 3
.

2 3 3 2 5 2 3 3 2 5

1 2 3 1
. .

3 2 3 2 5 3 2 5

k k k

k k k k

k k k
R H S

k k k

          

  
  

  

There for P (k + 1) is true.
There for by the principle of mathematical induction, the result P(n)
is true for all n  N.

That is
    

1 1 1 1
.....

3.5 5.7 7.9 2 1 2 3 3 2 3

n

n n n
    

  
, for all

n  N.

Example 15.

   
 

  

11 2 3
.....

3.4.5 4.5.6 5.6.7 2 2 3 6 3 4

n nn

n n n n n


    

     

Solution:- The result P (n) to be proved is that for all n  N,

   

 

  

11 2 3
.....

3.4.5 4.5.6 5.6.7 2 2 3 6 3 4

n nn

n n n n n


    

     

Step.1. for n = 1, L.H.S =
1

3.4.5
;

R.H.S =
 

  

1 1 1 1

6 1.3 1.4 3.4.5


 



There for L.H.S = R.H.S for n=1 there for P(1) is true.

Step.2. Let us assume that for some k  N , P (k) is true,
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That is

   

 

  

11 2 3
.....

3.4.5 4.5.6 5.6.7 2 3 4 6 3 4

k kk

k k k k k


    

     

……. (I)

Then to prove that P (k + 1) is true,

That is to prove that

       

  

  

1 21 2

3.4.5 4.5.6 2 3 4 3 4 5 6 4 5

k kk k

k k k k k k k k

 
   

         

Here L.H.S

       
1 1 1

3.4.5 4.5.6 2 3 4 3 4 5

k k

k k k k k k

              

 
      

1 1

6 3 4 3 4 5

k k k

k k k k k

 
 

    
…………… [by (1)]

  

  
   

   
   

  
  

2

1 1

3 4 4 5

1 5 6

6 3 4 5

1 2 3 1 2

6 3 4 5 6 4 5

. .

k k

k k k

k k k

k k k

k k k k k

k k k k k

R H S

        

  


  

    
 

    



There for P (k + 1) is true.

There for by the principle of mathematical induction, the result P(n)
is true for all n  N

That is,

   

 

  

11 2 3
.....

3.4.5 4.5.6 5.6.7 2 2 3 6 3 4

n nn

n n n n n


    

     

For all n  N.

Example 15. Show that if P(n) given by 1.6 + 2.9 + 3.12 +……….+
n(3n + 3) = +2n+3 is true for n = k then it is true for n = k +
1. Is P(n) true for all n  N?
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Solution:- Let us assume that P(k) is true.

Then 1.6 + 2.9 + 3.12 +………….+ k(3k + 3)

= + 2k + 3

Now we have to prove P(k + 1) is true.

There for to prove that

1.6 + 2.9 + 3.12 +…………..+ k(3k + 3) + (k + 1)(3k + 6) = (k + 1)3

+ 3(k + 1)2 + 2(k + 1) + 3

L.H.S = [1.6 + 2.9 + 3.12 +…..….+ k(3k + 3)] + (k + 1)(3k + 6)

=( + 2k + 3) + 3 + 9k + 6

=( + 3k + 1) + 3( ) + 2(k + 1) + 3

= (k + 1)3 + 3(k + 1)2+2(k + 1) + 3 = R.H.S

Hence if P (n) is true for n = k, it is also true for n = k + 1.

When n = 1, n3 + 3n2 + 2n + 3 = 1 + 3 + 2 + 3 = 9

Which is not the same as L.H.S = 1 (6) = 6.

There for P (n) is not true for n = 1.

Hence P (n) is not true for all n N.

Example 16 Prove that a set containing n elements, n ≥ 1, has 2n

subsets.

Solution : We will prove the result by induction on the size of the
set, n. Let P(n) denotes the statement : Number of subsets of a set

containing n elements is 2n . In this problem, 0n = 1.

Basis step : Since the only subsets of a singleton set x ={ 1x } are 

and { 1x }, the formula is true for n = 1. Induction step: Suppose

P(k), k ≥ 1, is true, i.e. any set with k elements has 2k subsets, k ≥ 1.
Let X =  1 2 1, ,........, kx x x  . Any subset S of X can be classified into

two types : (A) 1 ;kx S  (B) 1 .kx S  We will count these subsets

separately. If S is any subset of X of type (A) then S' = S −{ 1kx  } is

a subset of X − { 1kx  } and vice-a-versa. Therefore number of

subsets S of the set X of type (A) is same as number of subsets of a
set X − { 1kx  }. Since there are k elements in X−{ 1kx  }, by

induction there are 2k subsets of X −{ 1kx  }. Thus there are 2k

subsets of X of type (A). Any subset S of the set X of type (B) is a
subset of X − { 1kx  } and vice-a-versa. By induction it follows that

there are exactly 2k subsets of X of type (B). Thus number of

subsets of the set X containing k + 1 elements is 12 2 2k k k  . The
result now follows by the method of induction.
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Example 17 Prove that 1 2 3 , 2n n n    .

Solution : Let P(n) : 1 2 3 , 2n n n    . In this case, 0 2n  .

Basis step : Clearly, 2 21 2 5 3 9    , it follows that P(2) is true.

Induction step: Suppose P(k), k ≥ 2 is true. Thus we have

1 2 3 , 2k k k   .

Now 11 2 1 2 2 2(1 2 ) 1 2(3 ) 1,k k k k         by induction. Clearly,
12(3 ) 1 3 (3 1) 3 3 3k k k k k k       . Thus P(k + 1) is true. By

induction, the result is true for all integers greater than 1.

Example 18 (De Morgan’s Laws ) Let 1 2, ,......, nA A A be any n sets.

Prove that

1.
1 1

, 1.
n n

i i
i i

A A n
 

 
    

 
 

2.
1 1

, 1.
n n

i i
i i

A A n
 

 
    

 
 

Solution : Let P(n) be the statement that equality holds in(1) for any
n sets.

Basis step : The statement is true for n = 1.

Induction step : Suppose P(k) is true. Thus we have

1 1
, 1.

k k

i i
i i

A A n
 

 
    

 
 

The left-hand side of P(k + 1) is

1

1 2 1 1
1

.......
k

i k k k
i

A A A A A A A


 


 
   

 
     

where 1 2 ........ .kA A A A    By De Morgan’s laws for two sets,

1 1.k kA A A A    By induction,

1 2
1

...... :
k

k
i

A A A A A
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Hence P(k + 1) is true. The result now follow by induction.

Example 19 Prove that 3 | ( 3n n ) for any natural number n.

Solution : Let P(n) denote the statement that 3 | ( 3n n ) for any
natural number n.

Basis step : Clearly, ( 31 −1) = 0 is divisible by 3, it follows that P(1)
is true.

Induction step : Suppose 3 | ( 3k k ), k ≥ 1, i.e.( 3k k ) = 3t, for
some integer t. Since

     3 3 2 31 1 3 3 1 1k k k k k k k k             23 k k . By

induction, the first term on the right is divisible by 3 and hence it
follows that the right side is divisible by 3. We conclude the result
by the principle of induction.

2.5 LET US SUM UP

We have learned logical connectives such as negation,
conjunction, disjunction. We also have learned about quantifiers,
conditional and bi-conditional statement. Finally we have learned a
method of proof the principle of mathematical induction.

2.6 UNIT END EXERCISE

Prove the exercise number 1 to 8 by the principle of induction.

1. 2

1

( 1)(2 1)

6

n

i

n n n
i



 


2.
2

3

1

( 1)

2

n

i

n n
i



 
  
 



3.
1

1
. . , 1

1

n n
i

i

r
a r a r

r



  




4. 2

1 1

2 ( 1), (2 1)
n n

i i

i n n i n
 

     

5.
1

(4 3) (2 1)( 1)
n

i

i n n
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6. Prove that sum of first n terms of an arithmetic progression a, a +
d, a +

2d, ……..+ [a(n − 1)d] is given by
 2 ( 1)

2

n a n d 
.

7.
1 1 1 1

........ .
1.2 2.3 3.4 ( 1) 1

n

n n n
    

 

8.
2 2

1 2 3 2
....... 2 .

2 2 2 2 2n n

n n 
     

9. Find a formula for 2 2 2 21 3 5 ........ (2 1)n     and prove it by

induction.

10. Prove that
1

1 1
2 2

n
n 

   
 

.

11. Prove that 2 , 1.nn n  

12. Let 1 2, ,......., nA A A and B be any sets. Prove by induction the

following distributive properties

(a)  
1 1

, 1.
n n

i i
i i

A B A B n
 

 
    

 
   

(b)  
1 1

, 1.
n n

i i
i i

A B A B n
 

 
    

 
   

13. If A and B are two square matrices of order n such that AB =

BA. Prove that   , 1.
n n nAB A B n   .

14. (a) Prove that product of any two consecutive integers is
divisible by 2.

(b) Prove that product of any three consecutive integers is
divisible by 6.
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RELATIONS AND IT’S PROPERTIES

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Product sets and partitions

3.2.1 Product sets

3.2.2 Partitions

3.3 Relations and diagraphs

3.3.1 Definition and examples of relation

3.3.2 Sets related to a relation

3.3.3 The matrix of a relation

3.3.4 The diagraph of a relation

3.4 Paths in relations and diagraphs

3.4.1 Paths in a relation ‘R’ can be used to define new
relations

3.4.2 Matrix version

3.5 Properties of relations

3.5.1 Reflexive and Irreflexive relations

3.5.2 Symmetric, Asymmetric and Antisymmetric relations

3.5.3 Transitive relations

3.6 Let us sum up

3.7 References for further reading

3.8 Unit end exercise

3.0 OBJECTIVES:

After going through this chapter you will be able to :

 Understand the concept and definition of product and
partition of a set.

 Understand the different representation of a relation (set
theoretical, pictorial and matrix representation).

 Understand the definition of a path in a relation and able to
find paths of different length.

 Understand the different properties of binary relation.
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3.1 INTRODUCTION:

In day today life we deal with relationships such as an
employee and employee number, element and set, a person and his
telephone number etc. In mathematics it’s looked in more abstract
sense such as division of integers, order property of Real numbers
and so on. In computer science, a computer programme and variable,
computer language and valid statement and so on Relations are
useful in computer databases, networking etc.

3.2 PRODUCT SETS AND PARTITIONS:

3.2.1 Product sets

Definition:

Let A and B be two non empty sets. The product set or
Cartesian product of A and B, (denoted by AB) is the set of all
ordered pairs (a, b) where a A and b B .

Thus,  A B (a,b) / a A and b B     

[ Note: an order pair (a, b) is the ordered collection that has ‘a’ and
‘b’ in prescribed order, ‘a’ in first position and ‘b’ in second
position.]

Examples:

(1) Let  A = 1, 2, 3 and  B = x, y

then  A B (1, x), (1, y), (2, x), (2, y), (3, x), (3, y)            

Similarly,  B×A = (x,1), (y,1), (x, 2), (y, 2), (x, 3), (y, 3)

(2) Let A be the set of all 2 divisions in Xth class in some school and
B be the set of all 3 courses available.

i.e.    ++A = X, Y , B = C , Java, VB

then

 ++ ++A × B = (X, C ), (X, Java), (X, VB) (Y, C ), (Y, Java), (Y, VB)

so there are total 6 categories possible.

Remark:

(1) AB and BA may or mayn’t be equal.

(2) If A and B are finite sets then A B A . B B A   
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(3) An ordered pair 1 1(a ,b ) and 2 2(a , b ) are equal iff 1 2a a and

1 2b b .

(4) The idea of Cartesian product of two sets can be extended to
‘n’ number of sets 1 2 nA , A ,..., A ,  (it’s denoted by

1 2 nA A ... A )   and it’s defined as, 1 2 nA A ... A   

 1 2 n 1 1 2 2 n n(a , a ,..., a ) / a A , a A ...& a A      

[ 1 2 n(a , a ,..., a )  is an ordered ‘n’ -tuple.]

3.2.2 Partitions

Definition:

A partition of a nonempty set A is a collection

 1 2 np A , A , ..., A    of nonempty subsets of A such that

(1) 1 2 3 nA A A ... A A     

(2) i jA A 0 (1 i j n)    

1 2 3 nA , A , A , ..., A    are called as blocks or cells of the partition.

Example:

(1)  A 1, 2, 3, 4, 5    

(a) Let  1A 1 ,   2A   and  3A  

Then we have, 1 2 3A A A A   

1 2 1 3 2 3& A A O, A A O , A A O       

 1 2 3P A , A , A    is a partition of ‘A’

(b) Let  1A 1, 2 ,    2A   ,  3A   and  4A  

then  1 2 3 4P A , A , A , A    is a partition of A.

(c) Let  1A 1, 2 ,    2A   ,  3A  

then  1 2 3P A , A , A   is not a partition of A

1 2A A O 

(d) Let A   set of all ‘integers’

E = set of all even integers and
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O = set of all odd integers

We have, E O O and E O A

 P E, O   is a partition of A.

Check your progress

1. List all partition of  A a, b, d .  

2. Let        1 2 3A a, b, c, d, e, f , g, h and A a , A b,c , A d,e, f ,           

     4 5 6A g, h and A f , g , A a, b, c        

Which of the following are partition of A.

(a)  1 2 3A , A , A  (b)  1 2 3 4A , A , A , A   (c)  3 4 5 6A , A , A , A  

(d)  3 6 4A , A , A 

3. A B B A   if (a) A is finite (b) A=B

(c) B is finite

4. If      A x, y, z , B 1, 2, 3 and C a, b           write down the set

ABC.

3.3 RELATIONS AND DIAGRAPHS:

3.3.1 Definition and examples of Relation

Definition:

Let A and B be two non empty sets A relation R from A to B
is a subset of AB.

If (x, y) R then we write xRy and If (x, y) R then we
write xRy .

Examples:

(1) Let    A 1, 2, 3 & B x, y, z        then  R (1, x), (1, y), (2, z)    is

relation from A to B.

Note: If A=B then instead of saying a relation from A to B we will
say a relation on A.

(2) Let  A B 1, 2, 3, 4      Let R be a relation on A defined as xRy

iff x > y.

 R (2,1), (3,1), (3, 2), (4,1), (4, 2), (4, 3)            
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(3) Let A B   The set of Real numbers.

Let R be a relation on A such that

xRy iff 2 2x y 25 

5

Fig. 3.1

 2 2R (x, y) / x y 25    

= The set of all points on the circle centre at origin with
radius ‘5’

We can see, (3,4) R 2 2( 3 4 25) 

but (3, 3) R 2 2( 3 3 18 25)  

(4) Let A   , Let ‘R’ be a relation on ‘A’ defined as xRy iff ‘x’
divides ‘y’.  R (1, 2), (2, 4), (5,10), (2, 6),....       

We have 1 R 2 but 2 R 1  .

3.3.2 Sets related to a relation

Let ‘R’ be relation from A to B.

Two important sets related to R are the Domain of ‘R’
[denoted by Dom (R)] and The Range of R [denote by Ran (R)].

We have, Dom (R)=  x /(x, y) R A   i.e. Dom (R) is a

subset of ‘A’ containing first element of the pair (x, y) which
belongs to ‘R’. Similarly, Ran (R)=  y /(x, y) R B   .

For Example:

(1) Let  A 1, 2, 3   and  B x, y  R (1, x), (3, y)   

Dom (R)=  1, 3 A  and Ran (R)=  x, y B 

(2) Let A and B be only two sets and R = AB.

Then Dom (R) = A and Ran (R) =B



41

Check your progress

1. Write down the elements of R form  A 0,1, 2, 3    to

 B 1, 2, 3 ,   defined as (a,b) R iff

(a) a = b (b) a + b is an even number

(c) a + b is a multiple of ‘3’ (d) a b

2. Find the domain and Range of the relations defined in Q.1.

3.3.3 The matrix of a Relation

A relation between two finite sets can be represented by a
Boolean matrix (a matrix which is having entries as ‘0’ or ‘1’)

Let ‘R’ be a relation from  1 2 mA a , a , ..., a   to  1 2 nB b , b , ..., b .   

(Here the elements of A and B are listed in a particular order). Then
relation ‘R’ can be represented by the m x n matrix R m nM [mij] ,

which is defined as,

1 if
0 ifij

( a , b ) Ri j
m

( a , b ) Ri j

   
    

The matrix RM is called as the matrix of a Relation ‘R’

Examples:

(1) Let  A = 1, 2, 3 and  B x, y  and

 R (1, x), (2, x), (3, y), (1, y), (3, x)         

R

3 2

1 1

M 1 0

1 1
 

 
    
  

(2) Let  A B 1, 2, 3, 4    

Let ‘R’ be a relation on ‘A’ defined as xRy iff x y .

 R (1,1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)                    

 
 
 
 
 
 

R

4×4

1 1 1 1

0 1 1 1
∴M =

0 0 1 1

0 0 0 1

Note: Converse process is also possible i.e. given a matrix with
enteries ‘0’ or ‘1’ we can write ‘R’ related to that matrix.
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3.3.4 The Diagraph of a Relation

Just we saw that a relation on finite set ‘A’ can be represented
by a binary matrix. Similarly there is another way of representing a
relation using a pictorial representation. Pictorial representation of
‘R’ is as follows, Draw a small circle for each element of A and
label the circle with the corresponding elements of A, (these circles
are called as vertices) draw an arrow from vertex ia to ja iff

i ja R a . (these arrows are called as edges)

The resulting pictorial representation is called as Directed
graph or diagraph of ‘R’.

For example:

(1) Let  A B 1, 2, 3, 4     and  R (1,1), (1, 2), (2, 3), (3, 4), (2, 4), (3,1)           

1

2 3

4

Fig. 3.2

Note:

(1) An edge of the form (a, a) is represented using an arc from the
vertex ‘a’ back to it self. Such an edge is called a loop.

(2) Conversely diagraph can be used to find underlying relation
represented by it.

(3) There are two important definitions arising from the diagraph.

(i) In-degree of = no. of arrows
a vertex coming towards that vertex and

(ii) Out-degree of = no. of arrows
a vertex going away from that vertex
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For example (1) for below diagraph

1

2

3

4

5

Fig. 3.3

1 2 3 4 5

In-degree 2 1 1 1 1

Out-degree 0 4 1 1 0

Check your progress

1. Write down the matrix RM and draw the diagraph for following

relations.

(a)  A B 1, 2, 3, 4 ,     R is such that xRy iff x | y.

(b)  A B 1, 2, 3, 4 ,     ‘R’ is such that xRy iff x y 5 

(c)  A B 1, 2, 4, 6 ,     ‘R’ is such that xRy iff x y is a

multiple of ‘2’

2. Write down In-degree and out-degree for each of the vertices in
example (1).

3. Let A   , Give a description of the relation ‘R’ specified by
the shaded region shown below

(0, 2)

(-2, 0) (2, 0)

(0, -2)

Fig.3.4
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3.4 PATHS IN RELATIONS and DIAGRAPHS:

Let A be a given set and let ‘R’ be a relation on ‘A’. A path of
length m in R from ‘a’ to ‘b’ is a finite sequence.

0 1 2 3 m 1 m: a x , x , x , x , ..., x , x b,         starting from ‘a’ and ending

to ‘b’ such that 1 1 2 2 3 m 1aRx , x Rx , x Rx , ..., x R b.       

Note: Length of a path is nothing but the number of arrows involved
in a path.

For example:

(1) Consider the following diagraph,

1

2

3

4

Fig. 3.5

1 :1, 2, 4   is a path of length ‘2’

2 :1, 2, 4,1    is a path of length ‘3’

3 : 4, 4, 3   is a path of length ‘2’

4 : 4, 4  is a path of length ‘1’

Note: a path like 2 4&  are called as cycles, a cycle is a path

which is having same starting and ending vertex.

3.4.1 Paths in a relation ‘R’ can be used to define new relations.

From above example, It can be seen that paths of length 1 can
be identified with the elements of R and vice versa. So ‘R’ can be

replaced by 1R where ‘1’ stands for set of all order pairs (x, y) for
which there exist a path of length 1 from x to y. on similar lines now

we can define 2 3 nR , R ,...., R (n )   
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 2R (x, y) / if a path of length '2 ' from 'x ' to ' y ' . 

 

 nR (x, y) / if a path of length 'n ' from 'x ' to ' y ' . 

 

Now we may define R as,

 R (x, y) / if some path from 'x ' to ' y ' .  

i.e. i

i 1
R R





  

For example:

(1) Consider the following diagraph.

1

2

3

4

Fig. 3.6

So,  1R (2, 2), (2,1), (2, 4), (3, 2), (3, 4), (1, 4), (1, 3)             

Now for 2R , we have to find all Paths of length ‘2’

1 : 2, 2, 2   2 : 2, 2,1   3 : 2, 2, 4  

4 : 3, 2, 2   5 : 3, 2, 4   6 : 3, 2,1  

7 :1, 3, 2   8 :1, 3, 4   9 : 2,1, 3  

i.e.  2R (2, 2, ), (2,1), (2, 4), (3, 2), (3, 4), (3,1), (2, 3), (1, 2), (1, 4)                 

similarly we can find 3 4R , R and so on.



46

(2) Consider the diagraph,

a

b

c

d

Fig. 3.7

Then,         1R (a,b),(b,a), (b,c), (c,d)

 2R (a, a), (a, c), (b, b), (b, d)       

 3R (a, b), (a, d), (b, a), (b, c)       

 

 R (a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, d)                  

Note: Since ‘n’ is finite the process of finding 1 2 3R , R , R ,...  will

stop after some finite ‘n’.

In fact we can prove that, 1 2 3 nR R R R ..... R ,       

where ‘n’ is number of elements in the given set ‘A’.

3.4.2 Matrix version

If R is large, it would be tedious to compute R , or even

2 3R , R etc. from the set representation of R so we have following

matrix version of above concepts.

First we will see some different operations defined on Boolean
matrices.

Let ijA a    and ijB b    be two m x n Boolean matrices.

(1) we define ijA B C [C ],   the join of A and B by,

ij ij
ij

ij ij

1 if a 1or b 1
C

0 if a & b both are 0
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(2) We define ijA B E [e ],   the meet of A and B

ij ij
ij

ij ij

1 if a 1& b 1
e

0 if a 0 or b 0

   
 

     

(3) Let ij m p
A a


    and ij p n

B b


    be two Boolean matrices.

Then Boolean product of A and B, (denoted by A B) is the

mn Boolean matrix ijC [C ] defined by

1 if aik = 1 and bkj =1 for some k, 1 k p 

0 otherwise

for eg: Let

3 3 3 2

1 0 0 1 0

A 0 1 0 & B 1 1

1 1 0 0 1
   

   
         
      

3 2

1 0

A B 1 1

1 1
 

 
    
  



Note:

a a .... ai1 i2 ip
C C C11 12 1nb b b ba a .... a 11 12 ij 1n21 22 2p

b2j Cij
a a .... ai1 i2 ip

b b b bp1 p2 pj pn pxn C C Cm1 m2 mn mxna a .... am1 m2 mp mxp

=

é ù
é ùê ú é ù ê úê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úê ú ë û ê úë ûê ú

ë û

L
K L

M M M
M M MM M M

M Me
M M M

M M M
L LM M

L

i1

i2

ip

a

a

a

M

ij

2 j

pj

b

b

b

M

If any corresponding
pair of entries
are both equal
to 1, then
otherwise

C ij = 1 ;

= 0
ij

C

ijC 
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We can prove that 2 R RR
M M M  i.e. matrix related with

2R is nothing but the Boolean product of RM with RM similarly.

n R R RR
M M M .... M    (‘n’ times)

For example

1

2

3

4

Fig. 3.8

as we saw,  2R (2,1), (2, 2), (2, 4), (3, 2), (3, 4), (3,1), (1, 2), (2, 3), (1, 4)                 

2R

4 4

0 1 0 1

1 1 1 1
M

1 1 0 1

0 0 0 0
 

 
 
  
 
 
 

and R

4 4

0 0 1 1

1 1 0 1
M

0 1 0 1

0 0 0 0
 

 
 
 
 
 
 

Now let’s compute, R R

0 0 1 1 0 0 1 1

1 1 0 1 1 1 0 1
M M

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

   
   
   
   
   
   

 

2R

0 1 0 1

1 1 1 1
which is nothing but M

1 1 0 1

0 0 0 0

 
 
     
 
 
 

i.e. 2 R RR
M M M is verified.  
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Notation: R RM M  is denoted by  2RM


Similarly,  nR R R R

'n ' times

M M ... M M






 


i.e.  nn RR
M M , n 2   



Now, we know that, i

i 1
R R





 

i.e. 1 2 3 4R R R R R ...        

we can check that If R and S are two relations then

R S R SM M v M .  

if we extend this idea we have,

1 2 3 4R R R R R
M M v M v M v M v...       

i.e.      2 3 4
1 R R RR R

M M v M v M v M v...       
  

thus, we got another way of calculating
2

R 3 n RR R
M , M ,....., M , ..., M     and which in turn gives the sets

2 3 nR , R , ...,R , ...., R .   

Check your progress

1. Consider the following diagraph and answer following

5

1

2

3

4

Fig. 3.9
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(a) List all paths of length ‘2’

(b) List of all paths of length ‘2’ starting from ‘3’

(c) List all cycles

(d) All cycles starting at ‘1’

2. For example (1) find 2R
M and 3R

M ?

3. Prove that if R and S are two relations then R S R SM M v M  

3.5 PROPERTIES OF RELATIONS:

3.5.1 Reflexive and Irreflexive Relations

A relation on set ‘A’ is reflexive if (x, x) R x A   

[or xRx x A]   

A relation on set ‘A’ is irreflexive if (x, x) R x A   

[or xRx x A]   

For e.g. (1) Let  A 1, 2, 3, 4    with Relations R,S,T on A.

If  R (1,1), (1, 2), (2, 2), (3, 3), (4, 4), (4, 2)             then ‘R’ is reflexive.

If  S (1,1), (2,1), (3, 3), (4, 3), (4, 4)          then ‘S’ is not reflexive.

( 2 R 2)  and also ‘S’ is not irreflexive.  (3,3) R or (2, 2) R    .

if  T (1, 2), (2, 3), (3,1)      then T is irreflexive.

Note:

(1)  (x, x) / x A    is called as an equality relation on ‘A’.

(2) ‘R’ is reflexive iff R. 

(3) ‘R’ is irreflexive iff R O 

(4) If R O, an empty relation then ‘R’ is not reflexive since

(x, x) R x A.     However, R is irreflexive.

(5) Let ‘R’ be a reflexive relation on set ‘A’ then matrix of relation

RM must have diagonal elements as 1.

(6) If ‘R’ is irreflexive then RM must have diagonal elements as

zero’s.
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3.5.2 Symmetric, Asymmetric and Antisymmetric relations

(1) A relation on set ‘A’ is symmetric if whenever
(a, b) R, then (b, a) R      .

(2) A relation on set ‘A’ is asymmetric if whenever
(a, b) R, then (b, a) R      .

(3) A relation on set A is antisymmetric if whenever
(a, b) R, & (b, a) R      then a = b.

For Examples:

(1) Let A   , ‘R’ be a relation on ‘A’ such that xRy iff ‘x’ divides
‘y’.

(a) If xRy (i.e. ‘x’ divides ‘y’)

then yRx or y R x 

( ' y ' may or mayn’t divide ‘x’)

For eg: 2 R8 (as 2|8) but 8 R 2 ( 8 2)   

R isn ' t asymmetric  

(b) If a = b = 2 then aRb as well as bRa

R is not asymmetric

(c) If ‘a’ and ‘b’ are such that a/b and b/a

A / b and b / a gives a = b

 R is antisymmetric

(2) Let A = set of all lines in a xy-plane.

(a) If  and m are in A such that R m then

m R  ( R m m m m R )           

 R is symmetric

(b) R is not asymmetric as R m mR    

(c) R is not antisymmetric as we can have 2 distinct lines | | to each
other butn’t equal.

Fig. 3.10

R

m
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(3) Let A ,  ‘R’ is a relation such that x R y iff x < y then R is not

symmetric but R is asymmetric. ( x R y x y   

y x 

y R x)  

Notes:

1) The matrix RM of a symmetric relation satisfies the property that

t

R R
M M i.e. if ijm 1 then jim 1 and if ijm 0 then jim 0

2) The matrix RM of an asymmetric relation satisfies the property if

ijm 1 then jim 0 and iim 0 i  (i.e. diagonal elements are

zero)

3) Relation ‘R’ is antisymmetric means x R y and y R x x y 

contrapositive of this statement is, if x y xRy or yRx   

i.e. RM of antisymmetric relation satisfied the property that if

i j, then ij jiM 0 or M 0   

Similarly for diagraphs we have,

4) The diagraph of symmetric relation has the property that if there
an edge from i to j, then there is an edge from j to i.

5) If R is an asymmetric relation, then if there an edge from i to j so
there can’t be any edge from j to i and there can’t be any cycle of
length ‘1’.

6) If ‘R’ is an antisymmetric relation, then for different i and j there
can not be an edge from vertex ‘i’ to vertex ‘j’ and an edge from
vertex ‘j’ to vertex ‘i’. (we can’t say anything if i = j )

3.5.3 Transitive Relations

A relation ‘R’ on set ‘A’ is said to be transitive if (x, y) R 

and (y,z) R  then (x, z) R.

[ i.e. if xRy and yRz xRz]     

For Example:

(1) Let    A 1, 2, 3, 4 and let R (1,1), (1, 2), (2, 2), (2, 4), (1, 4)                 and

 S (3, 2), (2,1), (1, 4), (4, 2), (1, 2)          then we can check ‘R’ is

transitive but ‘S’ is not. [ (3, 2) & (2,1) S but (3,1) S ]          
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(2) Let A & Let 'R ' be arelation .       Then, if xRy and yRz i.e.
x y & y z   

We have x y z xRz  

 R is transitive.

Notes:

(1) A matrix RM of relation ‘R’ has the property, if

ij jkm 1 & m 1   

Then ikm 1

(2) from above point (1) we can see that if  2RM


= Rm then R is

transitive but converse is not true.

(3) If there is a path of length ‘2’ from ‘a’ to ‘c’ then there has to be
a path of length ‘1’ from ‘a’ to ‘c’ inorder to have ‘R’ transitive.

i.e. if (a, c) 2R then (a,c) R   

i.e. 2R R
a

b

c

R is transitive iff 2R R Fig. 3.11

(4) more generally we have,

‘R’ is transitive iff nR R n 1 

Check your progress

1. Determine whether the following relation is reflexive,
irreflexive, symmetric, asymmetric, antisymmetric or transitive.

Let  A 1, 2, 3, 4   

(a)  1R (1,1), (2, 2)   

(b)  2R (1,1), (2, 3), (3, 2), (2, 2)       

(c)  3R (2, 3), (3, 2), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)              

(d)  4R (2, 3), (3, 2), (1, 4), (4, 2), (1, 2)         
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2. Determine whether the relation ‘R’ on the set  A 1, 2, 3   whose

matrix RM and Diagraph are given is reflexive, irreflexive,

symmetric, asymmetric, antisymmertic or transitive.

(a)

0 1 0

1 0 1

0 1 0

 
 
 
  

1

3

2

Fig. 3.12

(c)

1 0 0

0 1 1

1 0 1

 
 
 
  

1

3

2

Fig. 3.13

3.6 LET US SUM UP

We started the definition of product sets which is useful in
defining relation from one set to other. Then we saw different ways
of representing a relation. Which is useful in understanding the
concepts in more better way. Then we saw very important definition
of a path in a relation and then concepts of paths of different length
and then finally matrix version of it. At the end we saw different
properties of a relation which is useful in coming chapters.

(b)

(d)
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3.7 REFERENCES FOR FURTHER READING:

(1) Discrete structures by B. Kolman HC Busloy, S Ross PHI Pvt.
Ltd.

(2) Discrete mathematics and its application, Keneth H. Rosen
TMG.

(3) Discrete structures by Liu.

3.8 UNIT END EXERCISES:

1. Find R for the relation ‘R’ whose diagraph is

1

2 3 4

5

Fig. 3.14

Q.2 Calculate 4R
M for a relation  R (1,1), (3, 2), (1, 4), (2, 4)        on set

 A 1, 2, 3, 4   

Q.3 Determine whether following relations are reflexive,
irreflexive, symmetric, asymmetric, antisymmetric or transitive.

(a) A ,  x R y  iff x + y is an even number.

(b) A ,  x R y  iff 2 2x y 9 

(c) A ,  x R y  iff x y

(d) A ,  x R y  iff (x y) 3 

Q.4 Define a relation on  A 1, 2, 3, 4    that is

(a) Reflexive butn’t symmetric

(b) Transitive butn’t reflexive

(c) Antisymmetric and reflexive

(d) irreflexive and transitive

Q.5 Prove that if ‘R’ is symmetric then 2R is also symmetric.
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4

EQUIVALENCE RELATION AND
CLOSURES

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Equivalence relations

4.2.1 Definition

4.2.2 Equivalence relation and partition

4.3 Operations on relations

4.4 Closures

4.4.1 Reflexive and Symmetric closures

4.4.2 Transitive Closure

4.5 Composition

4.6 Computer representation of relations and diagraphs

4.7 Let us sum up

4.8 References for further reading

4.9 Unit end exercises

4.0 OBJECTIVES :

After going through this chapter, students will be able to

 Understand the definition of an equivalence relation and able to
identify an equivalence relation

 Find the Partition produce by an equivalence relation and vice
versa.

 Understand different operations that can be performed on
different relations which is useful in finding the closures of a
relation.

 Use Warshall’s algorithm to find transitive closure.



57

4.1 INTRODUCTION :

We have already seen the concept of reflexive, symmetric and
transitive etc. If a relation is not transitive then it doesn’t contain all
the pairs that can be linked so we want to make it transitive by
adding the remaining pairs with the property that resulting set is
smallest set containing given relation. Such a set is called as
transitive closure. Also we will see important concept of
composition of relations and computer representation of relation and
diagraph.

4.2 EQUIVALENCE RELATIONS

4.2.1 Definition :

Let ‘R’ be a relation on ‘A’, ‘R’ is said to be an equivalence relation
on A iff ‘R’ is reflexive, symmetric and transitive.

Examples :

(1) Let A = {1, 2, 3} and R = {(2, 2), (1, 2), (2, 1), (1, 1), (3, 3)} then
it’s easy to check ‘R’ is an equivalence relation.

(2) Let A =  and ‘R’ be a relation on ‘A’ such that R yx iff x+ y is

an even number.

To check whether ‘R’ is an equivalence relation or not.

(a) Let xA ,

 2 evenx x x  

 Rx x x A 

R is reflexive.

(b) Let x ,y A such that R yx i.e. evenyx   i.e. 2 ,y p px   

Consider, 2 eveny y px x    

 y x is also an even number.

 y R x

 R is symmetric.

(c) Let x ,y,z A such that 2 ,R y y p px x    -------------- (1)

and 2 ,y R z y z q q    --------------- (2)
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(1) + (2)  2 2 2y z p qx    

 2 2 – 2z p q yx   

  2 –z p q yx   

i.e. even numberzx  

 x zR

R is transitive.

and hence R is an equivalence relation.

(3) Let A =  and ‘R’ be a relation on ‘A’ such that x R y iff ‘ x ’

divides ‘y’. We have 3/6 but 6 X 3.

i.e. 3 R 6 but 6 R 3.

 ’R; isn’t symmetric,

 ’R’ isn’t an equivalence relation.

4.2.2 Equivalence Relation and Partition

Using an equivalence relation we can produce a partition and
vice versa. Let ‘R’ be a given equivalence relation on set ‘A’.

Let a A

We define a set which is equal to  / ,R a Ax x x is called as

an equivalence class of ‘a’. i.e. [a] =  / ,R a Ax x x .

For example,

(1) Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2),
(2, 2), (4, 4), (1, 3), (3, 1), (3, 3)}

Then, [1] =    x x/ R1 = 1, 2, 3

[2] = {1, 2, 3} and [4] = {4}

Theorem :-

Let ‘R’ be an equivalence relation on ‘A’. Then we have
following properties –

(i) [ ]
a A

A a


 

(ii) Any two equivalence classes are equal or disjoint.
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Proof :-

(i) T.P.T. [ ]
a A

A a


 

[a] =  / ,R a A Ax x x 





a A
U [a] A … (1)

Now, let xA t.p.t. x



a A
U [a]

 xA x xR (R is reflexive)

  x x


 
a A
U [a]

 x



a A
U [a] … (2)

By (1) and (2), A =
a A
U [a]

(ii) Let a, b A, t.p.t. [a]  [b] = 0 or [a] = [b]
If [a] and [b] are disjoint then done. So let’s consider
[a]  [b] 0

Let w a b [ ] [ ]

w a & w b  [ ] [ ]

w a and w R b R

a R w and w R b (R is symmetric)

a b [ ] (by definition)

a b [ ] [ ] ( a b [ ]  a R b and hence every element of

[a] is related to b)

Similarly, we can prove,    b a

 [a] = [b]

Two equivalence classes are either disjoint or equal. So,

from above theorem we can say  p a a A= [ ] / form a

Partition of set A.

Note : Above p is denoted as A/R.

Example –

(1) Let A = {1, 2, 3, 4} and R = {(1,1), (1,3), (3,1), (2,2), (4,4)}

[1] = {1, 3}, [2] = {2}, [4] = {4}

p = {[1], [2], [4]} is a Partition of ‘A’.
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We can reverse the above Process, i.e. given a Partition we
can produce an equivalence relation on a given set. Let ‘A’ be a
given set and let p be a partition of A. define a relation on set ‘A’ as,
x R y iff ‘ x ’ and ‘y’ belongs to same block or cell of the given

partition.

T.P.T. R is an equivalence relation.

(a) If Ax , then it’s very obvious x belongs to same block.

 R Ax x x ,

 R is reflexive.

(b) If x ,y A such that, R y & y belongs to same blockx x

y & belongs to same blockx

y R x

R is symmetric.

(c) If , y, w Ax  such that,

   R y & y R wx x ( and y belongs to same block)

and (y and w belongs to same lock)

x and w belongs to same block

R wx

 R is transitive
R is an equivalence relation.

For example,

(1) Let A = {1, 2, 3, 4} and partition p = {{1}, {2, 3}, {4}}

R = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4)}

Check your progress

1. Let  A = 1, 2, 3, 4, 5, 6, 7, 8 and           p = 1 , 2,3 , 4 , 5,6,7 , 8 be a

partition of A. Find corresponding equivalence relation.

2. Let  A = 1, 2, 3, 4, 5 and        R = 1,1 , 2, 2 , 1, 2 , 2,1 ,

 3,3 ,  4,4 ,      3, 4 , 4,3 , 5,5 be an equivalence relation on

‘A’. Find the corresponding Partition.
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4.3 OPERATIONS ON RELATIONS :

Let ‘R’ and ‘s’ be two relations from set ‘A’ to set ‘B’. We
have following operations defined on Relations.

(1) Complementary relation of ‘R’ (denoted as R )

R =     , y / , y Rx x 

(2) Inverse of a relation ‘R’ (denoted as –1R )

    –1R y y Rx x = , / ,

For example,

(1) Let  A = 1, 2, 3 and         R = 2, 2 , 1, 3 , 2, 3 , 3, 3

          R = 1,1 , 1, 2 , 2,1 , 3,1 , 3, 2 and

        –1R = 2, 2 , 3,1 , 3, 2 , 3, 3

(3)       R S y y R or y Sx x x  = , / , ,

(4)       R S y y R & y Sx x x  = , / , ,

For example,

(1) Let  A = 1, 2, 3, 4 and         R = 1, 2 , 1,1 , 2, 4 , 3, 2 and

        S = 2, 2 , 1,1 , 3, 2 , 3, 4

             R S 1,1 , 1, 2 , 2, 2 , 3, 2 , 3, 4 , 2, 4 = and

    R S 3, 2 , 1,1 =

Note :-

(1) R S R SM M M =

R S R SM M M =

 T–1
R RM = M

RR
M = M

[ RM complement is a matrix obtained by replacing every ‘1’ by
‘0’ and every ‘0’ by ‘1’.]
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Theorem : Suppose ‘R’ and ‘S’ are relations from ‘A’ to ‘B’

(a) If R S , then –1 –1R S

(b) If R S , then S R

(c)  –1 –1 –1R S R S = and  –1 –1 –1R S R S =

(d) R S R S = and R S R S =

(e) R is reflexive iff R is irreflexive.

(f) R is symmetric iff –1R = R

(g) R is antisymmetric iff –1R R  

(h) R is asymmetric iff –1R R  0

(i)  2 2 2R S R S 

Proof :

(a) Let   –1y Rx ,

 y R Sx  ,

  –1y Sx ,

–1 –1R S 

(b) Let  y Sx ,

 y Sx ,

   y R R Sx  ,

 y Rx ,

S R 

(c)       –1
R S y y R Sx x  = , / ,

=       y y R y Sandx x x , / , ,

=       –1 –1y y R y Sandx x x , / , ,

= –1 –1R S 

Similarly, other one.
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(d)     R S y y R Sx x  = , / ,

=       y y R or y Sx x x , / , ,

=       y y R or y Sx x x , / , ,

=     y y R Sx x  , / ,

= R S

(e), (f), (g) and (h) are easy to check

(i) Let    2y R Sx  , means w such that  R S wx  and

 w R S y

   R S w w R Sx x  , and

   R S y w, y R S  w

i.e.        w w, y R w w, y Sand and andx x , ,

   2 2y R y Sandx x  , ,

  2 2y R Sx  ,

  2 2 2R S R S 

Check your progress

1. Verify R S R SM M M = , R S R SM M M = ,  T–1
R RM M= ,

RR
M = M for relations.

R = {(1, 1), (1, 2), (2, 4), (3, 2)} and S = {(2, 2), (2, 4), (1,1),
(4, 3)} on set A = {1, 2, 3, 4}

2. Compute –1 –1R S, R S, R, S, R , S  for R = {(1, 2), (2, 2), (3,

2)} and S = {(1, 3), (2, 3), (3, 3), (2, 1)} on set A = {1, 2, 3}.

4.4 CLOSURES

If ‘R’ is some relation on ‘A’ that doesn’t have some
important relational properties like reflexivity, symmetry and
transitivity. It’s natural to ask a question like can we make it
reflexive, symmetric and transitive by adding some pair in it and we
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want to add as few new pairs as possible, so we want to find smallest
relation that contains given relation and posses the property we
desire. Such a smallest relation is called as closures of a given
relation.

4.4.1 Reflexive and Symmetric closures

Reflexive closure :-

Let ‘R’ be a given relation on ‘A’. Then reflexive closure of
‘R’ is the smallest reflexive relation containing ‘R’ and it’s denoted

by rR .

Note : (1) If R itself is reflexive then rR = R

(2) rR = R 

For example,

(1) Let A = {1, 2, 3} and R = {(1, 1), (1, 3), (2, 3), (3, 1)}

  rR = (1,1), (1, 3), (2, 3), (3,1), (2, 2), (3, 3)

Symmetric closure :-

Let ‘R’ be a given relation on set ‘A’. Then symmetric closure of
‘R’ is the smallest symmetric relation containing ‘R’ and it’s

denoted by sR .

Note : (1) If R itself is symmetric then sR = R

(2) s –1R = R R

For example,

(1) If A = { x , y, z} and R =         x, x , x, y , z, z , y, z then

            sR = x, x , x, y , y, x , z, z , y, z , z, y

Check your progress

1. Let ‘R’ be a relation whose matrix is



 
 
 
 
 
  4 4

1 0 0 1

0 1 0 0

1 0 1 0

0 1 0 0

.

Find the reflexive and symmetric closures of ‘R’.
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2. Let ‘R’ be a relation whose diagraph is

1

2

9

Fig. 4.1

Find the reflexive and symmetric closures of ‘R’.

4.4.2 Transitive Closure

Definition : Let ‘R’ be a relation on ‘A’. The transitive closure of
‘R’ is the smallest transitive relation that contains ‘R’. It’s denoted

by TR .

As compare to reflexive and symmetric closures it’s little bit
difficult to find transitive closure because we don’t have a formula
for it but we have following results and an algorithm for finding the
transitive closure.

Result :-

(1) Let ‘R’ be a relation on A. Then R is transitive closure of ‘R’.

For example,

(1) Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 3), (3, 4)} we

know that if, |A| = m, then 1 2 mR R R R   = .... .

1

2

3

4

Fig. 4.2
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 |A| = 4

 1 2 3 4R R R R R   =

 1R = (1,1), (1, 2), (2, 3), (3, 4)

 2R = (1, 2), (1, 3), (1,1), (2, 4)

 3R = (1,1), (1, 2), (1, 4), (1, 3) and

 4R = (1,1), (1, 2), (1, 4), (1, 3)

  R = (1,1), (1, 2), (1, 3), (1, 4), (2, 4), (2, 3), (3, 4)

 Transitive Closure = TR = R

The above graphical method is impractical for large sets and
relations and it is not systematic and also It would be more time
consuming and costly for large set.

But we have a more efficient algorithm for computing
transitive closure called as ‘Warshall’s Algorithm’.

Warshall’s Algorithm :-

Let ‘R’ be a relation on a set  1 2 nA = a , a , ....., a . If

x x x x1 2 3 n, , , ...., is a Path in R, then any vertices other than

x x1 m& are called interior vertices of the Path. Now, for  1 k n ,

we define a Boolean matrix kW as follows. kW has a ‘1’ in position

 i, j iff there is a path from i ja to a in ‘R’ whose interior vertices, if

any, come from the set  1 2 ka ,a ,....., a .

So, it follows that nW has a ‘1’ in position  i, j iff some Path

in ‘R’ connects ia with a j , i.e. nW = RM  . If we define 0W to be

R
m , then we will have a sequence 0 1 n RW , W ,..., W = M  . Now, we

will see how to compute matrix kW from the previous matrix k–1W

this procedure is called as ‘Warshall’s Algorithm’.

Step – I Let 0 RW = M .

Step – II Suppose we have calculated k–1W , now to calculate kW .
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Step – III List the locations 1 2p , p ,... in column ‘k’ of k–1W , where

the entry is ‘1’, and the locations 1 2q , q ,... in row k of

k–1W , where the entry is ‘1’.

Step – IV Put 1’s in all the positions  i jp , q of kW (if they are not

already there.)

For example,

(1) Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 3), (3, 4)} as
earlier.

Now, we will use Warshall’s Algorithm to find R .

(1) 0 R

1 1 0 0

0 0 1 0
W = M

0 0 0 1

0 0 0 0 4×4

 
 
 
 
 
 

=

(2) To computer 1W consider Ist column and Ist row of 1W where

1’s are present.

1

1 1 0 0

0 0 1 0
W =

0 0 0 1

0 0 0 0

 
 
 
 
 
 

(3) To compute 2W consider IInd column and IInd row of 1W

where 1’s are present.

2

1 1 0 0

0 0 1 0
W =

0 0 0 1

0 0 0 0

 
 
 
 
 
 

(4) To compute 3W , consider IIIrd column and IIIrd row of 2W

where 1’s are present.

Column Row
1 1

2

So fill the positions (1, 1) and (1, 2) by
1’s if not present already.

Column Row
1 3

So fill (1, 3) by ‘1’.
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3

1 1 1 1

0 0 1 1
W =

0 0 0 1

0 0 0 0

 
 
 
 
 
 

(5) To compute 4W , consider IVth column and IVth row of 3W

where 1’s are present.

 4 3 RW = W = M 

  TR = R = (1,1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

Note :

(1) Warshall’s Algorithm gives another method to calculate R .

(2) Warshall’s Algorithm relatively faster then other methods. (in
the sense of time taken)

Check your progress

1. Let A = {1, 2, 3, 4} and matrix of Relation ‘R; is,

R

1 0 1 0

0 1 0 0
M =

0 0 1 0

1 0 0 0

 
 
 
 
 
 

.

Find Rusing (a) Warshall’s Algorithm
(b) Diagraph

2. Let A = { x , y, z, w} and matrix of Relation ‘R’ is,

R 0

0 1 0 1

0 1 0 0
M = = W

1 0 1 0

1 0 0 0

 
 
 
 
 
 

Compute 1 2 3W , W , W as in Warshall’s algorithm.

Column Row
1 4
2

So fill (1, 4) and (2, 4) by 1’s.

Column Row
1 No
2 1’s
3

So, no new entries.
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4.5 COMPOSITION :

Let A, B, C be given sets. Let ‘R’ be a relation from A to B
and ‘T’ be a relation from ‘B’ to ‘C’ then we can define a new
relation from ‘A’ to ‘C’ called as composition of ‘R’ and ‘T’
[denoted by (TOR)]

A

R

B
C

T

ToR

Fig. 4.3

Definition : Let xA and y  c, then  TOR yx means there exist

w B such that ( R wx ) and (w T y).

For example,

(1) Let A = {1, 2, 3, 4} and

R = {(1, 1), (2, 3), (1, 4)} and T = (2, 2), (2, 3), (3, 4)}

(2, 3) R and (3, 4) T  (2, 4) TOR

 TOR = {(2, 4)}

In terms of Matrices,

If RM is a matrix related to ‘R’ and

If TM is a matrix related to ‘T’ and

TORM is a matrix related to (TOR).

Then we have, TOR R TM = M M

For example,

(1) Let A = {1, 2, 3} and let R and T be relations on ‘A’ whose
matrices

are R

1 0 1

M = 1 1 1

0 1 0

 
 
 
  

and T

1 0 0

M = 0 1 1

1 0 1

 
 
 
  

then we see that,
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(1,1) R (1,1) T (1,1) TORand   

(1, 3) R (3,1) T (1,1) TORand   

(1, 3) R (3, 3) T (1, 3) TORand   

(2,1) R (1,1) T (2,1) TORand   

(2, 2) R (2, 2) T (2, 2) TORand   

(2, 2) R (2, 3) T (2, 3) TORand   

(2, 3) R (3,1) T (2,1) TORand   

(2,3) R (3, 3) T (2, 3) TORand   

(3, 2) R (2, 2) T (3, 2) TORand   

(3, 2) R (2, 3) T (3, 3) TORand   

 TOR

1 0 1

M = 1 1 1

0 1 1

 
 
 
  

We can check that, TOR R TM = M M so this formula gives an

easy way to compute ToR (by using TORM )

Note : (1) If R = T then we have ToR = 2R and

2TOR R RR
M = M = M M .

(2) If we have relation R, T, S such that,

A

R

B

T

C

S

D

Fig. 4.4

then To (SoR) = (ToS) o R [i.e. composition is associative]

(3) In General, RoS  SoR

(4) –1 –1 –1(SoR) = R o S

Check your progress

1. A = B = C , A = { x , y, z, w} and R and T be two relations
such that
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R T

1 0 0 1 1 0 1 0

0 1 0 0 1 0 0 1
M = M =

0 1 0 1 0 0 1 1

1 0 1 0 0 1 0 1

and

   
   
   
   
   
   

then compute (ToR) and (RoT)

2. Give an example of relations R and T such that RoT ToR.

4.6 COMPUTER REPRESENTATION OF RELATIONS
AND DIAGRAPHS :

We know that a Relation ‘R’ on set ‘A’ can be represented by
an n X n matrix RM , if |A| = n. The matrix RM has entries that are

‘0’ or ‘1’. Then one of the easier way of representing ‘R’ in a
computer is by an n X n array having 0’s and 1’s stored in each
location. Thus, if A = {1, 2} and R = {(1, 1), (2, 1), (2, 2)}, then

R
1 0

M =
1 1

 
 
 

and these data would be represented by a two

dimensional array MR, where      MR 1,1 =1, MR 1, 2 = 0, MR 2,1 =1,

MR [2, 2] = 1 (MR means matrix related to ‘R’)

An another way of storing data for relations and diagraphs is
by using the linked list idea of computer programming. A liked list
will be constructed that contains all the edges of the diagraph, that is,
the ordered pairs of numbers that determine those edges. The data
can be represented by two arrays, TAIL and HEAD, giving the
beginning vertex and end vertex, respectively for all edges.

If we are making these edge data into a linked list, then we
need an array NEXT of pointers from each edge to the Next edge.

Consider the relation whose diagraph is

1

2

3

6

5

43

10

6

8

9

7

1

4

5

2

Fig. 4.5
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The vertices are the integers ‘1’ to ‘6’ and we arbitrarily
number the edges as shown in above diagraph. If we wish to store
the diagraph in liked – list form so that the logical order coincides
with the numbering of edges. We can use a scheme mentioned
below.

START TAIL HEAD NEXT

2 1

2

2

3

5

3

3

6

1

1

3

3

1

5

4

4

6

1

6

2

9

10

4

8

1

3

0

7

6

5

Fig. 4.6

START contains 2, the index of the first data item, the edge
(2, 3) [this edge is labeled with a ‘1’ in fig : 5.6]. This edge is stored
in the second entries of TAIL and HEAD, respectively. Since
NEXT [2] contains 10, the next edge is the one located in position
10 of TAIL and HEAD, that is, (1, 2).

NEXT [10] contains 5, so we go to next to data position 5,
which contains the edge (5, 4). This process continues until we
reach edge (3, 6) in data position 7. This is the last edge, and this
fact is indicated by having NEXT [7] contains ‘0’. We use ‘0’ as a
pointer, indicating the absence of any more data.

If we trace through this process, we will see that we
encounter the edges in exactly the order corresponding to their
numbering. We can arrange, in a similar way, to pass through the
edges in any desired order.

But this scheme and the numerous equivalent variations of it
have important disadvantages. In many algorithms, it’s efficient to
locate a vertex and then immediately begin to investigate the edges
that begin or end with this vertex. This is not possible in general
with the mechanism shown in fig : 2. So we have modification of it.
We use an additional linear array VERT having one position for
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each vertex in the diagraph. For each vertex I, VERT [I] is the
index, in TAIL and HEAD, of the first edge we wish to consider
leaving vertex I as shown below.

VERT TAIL HEAD NEXT

10

2

4

0

5

8

1

2

2

3

5

3

3

6

1

1

2

3

1

5

4

4

6

1

6

3

0

3

0

6

0

7

0

0

1

9

Fig. 4.7

In Fig. 4.5, the first edge could be taken to edge with the
smallest number labeling it. Thus VERT, like NEXT, contains
pointers to edges. For each vertex I, we must arrange the pointers in
NEXT so that they link together all edges leaving I, starting with the
edge pointed to by VERT [I]. The last of these edges is made to
point to zero in each case. In a sense, the data arrays TAIL and
HEAD really contain several linked lists of edges, one for each
vertex.

In Fig. 4.7 we can see that VERT [1] contains 10, so the first
edge leaving vertex 1 must be stored in the tenth data position. This
is edge (1, 3). Since NEXT [10] = 9, the next edge leaving vertex
‘1’ is (1, 6) located in data position ‘9’. Again NEXT [9] = 1, which
points us to the edge (1, 2) in data position 1. Since NEXT [1] = 0,
we have come to the end of those edges that begin at vertex ‘1’. The
order of the edges choosen here differs from the numbering in Fig. 1.

We then proceed to VERT [2] and get a pointer to position
‘2’ in the data. This contains the first edge leaving vertex 2, and we
can follow the pointers to visit all edges coming from vertex 2. Note
that VERT [4] = 0, signifying that there are no edges beginning at
vertex ‘4’.

So we have seen at least two methods for storing the data for
a relation or diagraph, one using the matrix of the relation and one
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using linked lists. There are number of factors which determines the
choice of method to be used for storage and an analysis shows that
matrix storage method is ‘n’ times faster than the linked list method
in most cases.

4.7 LET US SUM UP :

We saw the definition of an equivalence relation and method
to produce partition using an equivalence relation and vice versa.
Then we saw the different operations that can be performed on
relations and how some of them can be used to find closures. Then
we saw different method for computing transitive closures with an
important method Warshall’s Algorithm. At the end we saw two
important concepts, composition of relations and computer
representation of relation and diagraph.

4.8 REFERENCES FOR FURTHER READING :

(1) Discrete structures by B. Kolman Hc Busby, S Ross PHI Pvt.
Ltd.

(2) Discrete mathematics and it’s Application Keneth H. Rosen
TMG.

(3) Discrete structures by Liu.

4.9 UNIT END EXERCISES

Q.1 Let A =   , define the following relation ‘R’ on A : (a, b) R

(c, d) iff 2 2 2 2a + b = c + d show that ‘R’ is an equivalence
relation.

Q.2 Let A = { x , y, z, w} and ‘R’ be a relation on ‘A’ defined by,

R

1 0 0 0

0 1 1 1
M =

0 1 1 1

0 1 1 1

 
 
 
 
 
 

compute a partition produce by ‘R’.

Q.3 Let A = {1, 2, 3, 4,… 12} and let ‘R’ and ‘S’ be the following
relations on A : x R y iff  2 yx| – and yx  iff  3 yx| – .
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Compute –

(a) R (f) –1S

(b) S (g) R SM 

(c) R S (h) R SM 

(d) R S (i) –1R
M

(e) –1R (j)
S

M

Q.4 Find the transitive closure of a relation whose matrix is

1 0 1 1 0

0 1 0 0 1

1 0 1 0 0

0 1 0 1 1

1 1 0 0 0

 
 
 
 
 
 
  

by (a) computing R (b) using Warshall’s Algorithm

Q.5 Let A = {1, 2, 3, 4} and let R and S be the relations on ‘A’ such
that

 
 
 
 
 
 

R

1 0 0 1

1 0 1 0
M =

1 1 0 0

1 0 0 1

and S

1 0 1 0

1 1 0 0
M =

1 0 0 1

0 0 1 1

 
 
 
 
 
 

use Warshall’s Algorithm to compute the transitive closure of R S .

Q.6 If A = {1, 2, 3, 4} and let R and S be the relations on ‘A’ such
that

R

1 1 0 0

1 0 1 0
M =

1 1 0 1

0 1 1 0

 
 
 
 
 
 

and S

1 0 1 1

0 0 1 0
M =

1 1 0 1

1 0 1 1

 
 
 
 
 
 

Find (a) RoRM , (b) RoSM , (c) SoR , (d) RoS .
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5

PARTIAL ORDER SETS AND LATTICES

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Definition and examples

5.3 Hasse diagrams

5.4 Isomorphism

5.5 External Elements of partially ordered sets

5.6 Lattices

5.7 Let us sum up

5.8 Unit End Exercise

5.9 References for further reading

5.0 OBJECTIVES:

After going through this chapter students will be able to understand:

 The definition of partially order sets and example based on it.

 Idea of Hasse diagram and able to represent the diagraph of a
poset in more efficient way.

 The concept of Isomorphism and which is useful in
classification of Posets.

 The concept of maximal, minimal elements, the greatest and
least element, upper and lower bound of a subset and finally
the concept of LUB and GLB.

 The concept of Lattices and different properties of a Lattice.

5.1 INTRODUCTION:

We use relations to order some or all of the elements of sets.
For example we order words using the relation, containing pair of
words (x, y) where ‘x’ comes before ‘y’ in the dictionary. We
schedule projects using the relation consisting of pairs (x, y) where x
and y are tasks in project such that x must be completed before y
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begins. When we add all the pairs of the form (x, x) to these
relations we get partial order. (Practical definition afterwards). These
structures are useful in set theory, algebra, sorting and searching, in
the construction of logical representations for computer circuits.

5.2 DEFINITION AND EXAMPLES:

Definition: Let ‘R’ be a relation on set A. then ‘R’ is said to be
partial order if ‘R’ is (a) reflexive (b) antisymmetric and (c)
transitive.

The set A with partial order ‘R’ is called as partial order set or
poset and It’s denoted as (A, R)

For example

(1) Let A   and ‘R’ be a relation on ‘A’ such that x R y iff x y.

It’s easy to check ‘R’ is reflexive, ant symmetric and transitive.
∴ R is a partial order.
 ( , ) is a poset.

(2) Let  S = 1, 2, 3 and A = P(S)

            A 0, 1 , 2 , 3 , 1, 2 , 2, 3 , 1, 3 , S  

Let R be a relation on A defined as x R w iff x w

(a) Let x A,

x x

∴ xRx ∀ x ∈ A
R is reflexive

(b) Let x, w A such that x R w and w R x

xRw x w  (1)

and wRx w x  (2)

w x from and    

 R is antisymmetric

(c) Let x, w, z A such that x R w and w R z

x R w x w    (1)

and wRz w z  (2)
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From and  we have, x w z  x z  x R z  

R is transitive

R is partial order

(A, R)  is a poset

(3) Above example can be extended to any finite set as well as for an
infinite set

(4) Let A , & 'R '   be a relation on ‘A’ such that x R y iff x

divides y.

It’s easy to check (A, R) is a poset.

(5) Let A   and ‘R’ be a relation on A such that x R y iff x < y.
Then ‘R’ isn’t a partial order. ( ( R isn ' t reflexive 3 R 3)      

(A, ) isn ' t a poset.    

Note:

(1) Let ‘R’ be a partial order then 1R is also a partial order.

1R is called as the dual of R and the set 1(A,R ) is called the

dual of the poset (A, R)

For example (a) dual of ( , ) is ( , ) .

(2) IF (A, R) is a poset, the elements x and y of A are said to be
comparable if x R y or y R x. The important observation is that
two elements in a poset may not be comparable.

For example 2 and 7 in  with divisibility relation are not
comparable ( 2 7 & 7 2)   

(3) If every pair of elements in a poset is comparable, we say that
‘A’ is a linearly ordered and the partial order is called a linear
order and we say ‘A’ is a chain.

Check your progress

1. Determine whether relation ‘R’ is a partial order on the set ‘A’.

(a) A , and x R y iff x y        is an even number.

(b) A , and x R y iff x y       
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5.3 HASSE DIAGRAMS:

Result: The diagraph of a partial order has no cycle of length greater
than ‘1’ (except at loops)

With the help of above result we can simplify the diagraph of a
partial order, simplified diagram is called as Hasse diagram.

Procedure for finding Hasse diagram:

1) Draw the diagram of given partial order so that all the arrows
are pointing in upward direction.

2) Remove all cycles of length ‘1’ (i.e. loop at each of the
vertex)

3) Eliminate all edges that are implied by the transitive property
i.e. (a R b) and (b R c) then aRc so remove the edge from ‘a’
to ‘c’

b

c

a

Fig. 5.1

4) Replace arrows by line segments and circles by dots.

For example:

(1) Let  A 1, 2, 4, 5, 10, 20      with relation of divisibility.
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5

20

104

2

1

Fig. 5.2

Diagraph

5

20

104

2

1

Fig. 5.3 Step: 1 Fig. 5.4 Step: 2

5

20

104

2

1

20

10

5

4

2

1

Fig. 5.5 Step: 3 Fig. 5.6 Step: 4
Hasse diagram

5

20

104

2

1
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(2) Let               S 1, 2, 3 andA P(S) 0, 1 , 2 , 3 , 1, 2 , 2, 3 , 1, 3 S             

with relation of contain  
{ 1, 2, 3 } = S

{ 1, 3}
{ 2, 3}

{ 1 }
{ 2 }

{ 1 , 2 }

{ 3 }

O

Fig. 5.7 Hasse diagram

Check your progress:

Draw Hasse diagram of following diagraphs.

ba

c

d

3

4

2

1

5

(a) (b)
Fig. 5.8 Fig. 5.9

4

1

2

3

(c)
Fig. 5.10
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5.4 ISOMORPHISM :

Let (A, R) and (B, T) be two Posets. Then (A, R) and (B, T)
are said to be Isomorphic if F a function ‘f’ from ‘A’ to ‘B’ such
that

(a) f is bijective

(b) ‘f’ preserves partial order. [i.e. for any a, b in ‘A’, we have
a R b iff f(a) T f(b)]

Note :- If (A, R) and (B, T) are Isomorphic then such a ‘f’ is called
as an Isomophism from ‘A’ to ‘B’.
For example,

(1) Let (A, R) =  ,

(B, T) = (set of all even natural numbers,  )

Define f : (A, R)  (B, T) as f(m) = 2m

(a) Let a, bA such that f(a) = f(b)

 2a = 2b

 a = b

 f is one one.

(b) Let bB

b = 2q  q 

Take a = q

 f(a) = f(q) = 2q = b true b B 

 f is onto.

 f is bijective.

Now, Let a, b A such that a R b a b 

2a 2 b 

f(a) f(b) 

 f preserves partial order.

 f is an Isomorphism.

 (A, R) and (B, T) are Isomorphic.
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5.5 EXTERNAL ELEMENTS OF PARTIALLY
ORDERED SETS :

Let (A, R) be a given poset.

An element a A is called a maximal element of A if there is
no element ‘ x ’ (except ‘a’) in A such that a R x .

Similarly, an element b A is called a minimal element of A
if there is no element ‘ x ’ (except ‘b’) in A such that R bx .

For example,
(1) Consider the Hasse diagrams of some posets as shown below.

2

0

1

3

0

3

5

4

1

7

6

8

2

(a) (b)

Fig. 5.11 Fig. 5.12
Maximal element = 0 Maximal elements = 5, 6
Minimal element = 1 Minimal elements = 0, 1, 2

(2) Consider a poset  , , minimal element = 1, maximal element

doesn’t exist.

(3) Consider a poset  , minimal and maximal doesn’t exist.

Result :-

Let ‘A’ be a finite non empty poset, then A has atleast one maximal
and atleast one minimal element.

An element a ∈ A is called a greatest element of ‘A’ if R ax

Ax and an element b ∈ A is called a least element of ‘A’ if bRx
Ax  .
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For example,
(1)

1

2

3

0

Greatest element = 3
Least element = 1 Fig. 5.13

(2) Poset  , greatest element doesn’t exist least element = 1

(3)
e

f
d

c g

a b

Fig. 5.14

Greatest element = e
Least element doesn’t exist

(4)
d

a

e

b c

f

Fig. 11.15

Greatest as well as least element doesn’t exist.
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Result :-

A poset has at most one greatest and at most one least element.

Note :

(1) Greatest element is denoted by I and it’s also called as unit
element

(2) Least element is denoted by ‘0’ and it’s also called as zero
element.

Consider a poset (A, R) and a subset ‘B’ of ‘A’. An element
‘u’ of A is said to be an upper bound of B if bRu b B  .

An element ‘ l ’ of A is said to be a lower bound of B if
R b b B l .

For example,

(1) Consider the following poset and find the upper and lower
bounds of (a) 1B = {2, 5, 7} (b) 2B = {1, 3} (c) 3B = {3, 2, 7, 4}

1 3

6

5

4

2 7

Fig.5.16

For 1B , Upper bounds are 1, 2, 3

Lower bound is 5

For 2B , No upper bounds

Lower bounds are 2, 7, 4, 5, 6

For 3B , Upper bound is 3

Lower bounds are 5, 6

Note : 1) A subset ‘B’ of a poset may or mayn’t have upper or
lower bounds.

2) It can have more than one upper or lower bounds.
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3) Upper or lower bound may or mayn’t belong to given
subset.

Let ‘A’ be a poset and ‘B’ a subset of ‘A’.
1) An element are u ∈ A is called a least upper bound of ‘B’,

 L B B  

(a) If ‘u’ is an upper bound of ‘B’.
(b) If w is any other upper bound of ‘B’ then u R w,

Similarly,
2) An element l ∈ A is called a greatest lower bound of ‘B’,

 GLB B  

(a) If ‘l’ is a lower bound of ‘B’.
(b) If ‘t’ is any other lower bound of ‘B’ then t R l.

For example,

(1) Consider the following poset

(a) for a subset B = {e, d, h}
Upper bounds = a, c, b
Lower bounds = h, f, g

 L B B = h

 GLB B = does not exist (as ‘a’ and ‘c’ are not comparable)

e

f

d

c

g

a

b

h

Fig. 5.17

(b) For a subset D = {a, d. f. g}
Upper bounds = a, b L B = a

No lower bounds GLB = does not exist
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(c) For a subset E = {a, e, d}
Upper bounds = a, b L B = a

Lower bounds = h, f, g GLB = h

Result :

Suppose that (A, R) and (B, T) are Isomorphic posets under the
Isomorphism f : A B
(a) If ‘a’ is a maximal (minimal) element of (A, R), then f(a) is a

maximal (minimal) element of (B, T).

(b) If ‘a’ is the greatest (least) element of (A, R), then f(a) is the
greatest (least) element of (B, T)

(c) If ‘a’ is an upper bound (lower bound, least upper, upper bound,
greatest lower bound) of a subset ‘D’ of A, then f(a) is an upper
bound (lower bound, least upper bound, greatest lower bound)
for the subset f(D) of B.
[Notation : if D = {1, 2, 3} then f(D) = {f(1), f(2), f(3)}]

(d) If every subset of (A, R) has a L B (GLB), then every subset of
(B, T) has a L B (GLB).

For example,
(1)

b

a

d

c

32

1

Fig. 5.18 Fig. 5.19

This two posets are not Isomorphic as first one have a greatest
element but second one not.

(2) Consider the posets, A = {1, 2, 3, 6} with divisibility relation and
S = {1, 2} , A = P(S) with contain relation
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6

3

1

2

S

{ 1 } { 2 }

O

Fig. 5.20 Fig. 5.21

So these two posets are Isomorphic under the Isomorphism ‘f’
which is defined as, f(1) = ϕ, f(3) = {2}, f(2) = {1}, f(4) = S and 
they satisfy all conditions stated in above result.

Check your progress

1. Consider the poset,

m

a

b d

c

e

t

h

f
g

Fig. 5.22
(a) Find maximal, minimal, greatest and least element if exist.

(b) For following subsets find
(i) All upper bounds
(ii) All lower bounds
(iii) The least upper bound
(iv) The greatest lower bound

1) 1B = {a, c ,h}

2) 2B = {h, f, g, e}

3) 3B = {a, d, e, f}

4) 4B = {b, c, h, e}

2. Check whether following posets are Isomorphic if yes find the
corresponding Isomorphism.
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a b

d

f
c

e

e

c

t

d

a
b

Fig. 5.23 Fig. 5.24

5 4

1

32

1

2

3

4

5

Fig. 5.25 Fig. 5.26

e

d

c

a

b f

1

2

3

4

5

6

Fig. 5.27 Fig. 5.28

3. Find maximal, minimal, greatest and least element if exist.
(a) A =  with usual partial order  .
(b) A R 0 1 with usual partial order  = { / }andx x x
(c) A R 0 1 with usual partial order  = { / }andx x x
(d) A R 0 1 with usual partial order  = { / }andx x x

I

II

III
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5.6 LATTICES

5.6.1 Definition

A lattice is a poset (L, R) in which every subset consisting of
two elements has a least upper bound  L B and greatest lower

bound (GLB).

Notation :- If a set is {a, b} then L B({a, b}) is denoted by a b and

it’s called as join of ‘a’ and ‘b’. Similarly, GLB ({a, b}) is denoted
by a b and it’s called as meet of ‘a’ and ‘b’.

For example
(1) Consider a poset,

Fig. 5.29

 a b c d  a b c d

a a b c d a a a a a
b b b d d b a b a b
c c d c d c a a c c
d d d d d d a b c d

So, from the table of join and meet we can see L B and GLB of
any subset with two elements exist.
 it’s a Lattice.

(2) Consider a poset,

Fig. 5.30

Since L B y({ , }) x doesn’t exist.

 it’s not a lattice.

a

b

c

d

yx
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(3) Let ‘S’ be a given set and L = P(S). Consider ‘L’ with relation
contain  

We know that L ( , ) is a poset.

Let x, y  L, then x y X Y =  and X Y X Y = 

and which exist in L. (as they are subsets of ‘s’)

 L ( , ) is a lattice.

(4) Consider the poset ( , divisibility relation),

Let y,x  ,

then y = L C M ( , y) and y = G C D ( , y)x x x x          

(5) Let n ,

Let nD = set of all positive divisors of ‘n’, then it can be proved

nD with divisibility relation is a poset.

For example,

If n = 20, then 20D = {1, 2, 4, 5, 10, 20}

4

2

1

5

1 0

2 0

Fig. 5.31
Hasse diagram of 20D

is a Lattice. [it can be proved similarly as in example (1).]
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Check your progress

1. Check whether following Hasse diagrams are lattice or not?

e

b

a

c

d

f

a

c d

e

b

Fig. 5.32 Fig. 5.33

(a) (b)

1 2

3

4

5
6

t

y
w

z

x

Fig. 5.34 Fig. 5.35
(c) (d)

5.6.2 Isomorphic Lattices

Let  1 1L , R and  2 2L , R be two given posets. A function

1 2f : L L is said to be an isomorphism if

(1) ‘f’ is bijective
(2) f preserves the Lattice properties. [i.e. if a, b 1L then

     f a b = f a f b  and      f a b = f a f b  ]

Note :  1 1L , R and  2 2L , R are said to be Isomorphic Lattices.

For example,

(1) ( 6D , divisibility) and    P 1, 2, 3 ,  are Isomorphic Lattices.



93

5.6.3 Properties of Lattices

Theorem :-

Let (L, R) be a lattice, then for every ‘a’ and ‘b’, ‘c’ in ‘L’,

(1) a b = b iff a R b

(2) a b = a iff a R b

(3) a b = a iff a b = b 

(4) a a = a

(5) a a = a

(6) a b = b a 

(7) a b= b a  

(8)    a b c a b c   =

(9)    a b c a b c   =

(10)  a a b a  =

(11)  a a b a  =

Proof :-

(1) Assume a b = b  

 a R a b( )

 a R b

Conversely, if a R b, since b R b, b is an upper bound of ‘a’
and ‘b’. So, by definition of least upper bound we have

 a b R b . Since, a b is an upper bound,  b R a b , so

a b b  .

(2) and (3) proof similar to (1).

(4) and (5) follows from definition of L B and GLB.

(6) a b L B ({a, b}) = 

= L B ({b, a})

= b a

(7) Proof similar to (6)

Indempotent Properties

Commutative Properties

Associative Properties

Absorption Properties
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(8) From definition of L B , we have   a R a b c  and

    b c R a b c   and also  b R b c and  c R b c so by

transitivity,   b R a b c  and   c R a b c  thus,

 a b c  is an upper bound of a and b, so by definition of

L B we have,     a R a b c  b .

Since,  a b c  is an upper bound of a b and c, we obtain

     a b c R a b c   

Similarly,      a b c R a b c   

By antisymmetry of R, we have    a b c a b c   =

(9) Proof Similar to (7)

(10) Since,  a b R a and a R a, we have ‘a’ is an upper bound of

a b and ‘a’ so  a a b R a  .

On the other hand, by definition of L B , we have

  a R a a b  , so  a a b = a  

(11) Proof is similar to (10).

5.7 LET US SUM UP

We started the concept of partial order set (poset), a set with
some special properties of a relation, defined on a set. Then we saw
if a given relation is a partial order then diagraph of a partial order
can be represented in better way, so that we can retrieve more and
more properties of a given poset. Then we had seen a concept of
Isomorphism, which divides the space of Lattices in different
groups. Then we saw the concept of maximal, minimal elements,
upper bounds, lower bounds, GLB and L B of a subset of a given
poset. GLB and L B concepts are useful in defining Lattice which
in turn useful in defining Boolean Algebra (which we will be seeing
in the next chapter).
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5.8 UNIT END EXERCISES

1. Determine whether the following relation ‘R’ is a partial order or
not on a given set.

(a) A = , a R b iff a + b is even.

(b) A = , a R b iff a = b.

2. Determine the Hasse diagram of the relation on {1, 2, 3, 4, 5}A 

whose matrix is

(a)

 
 
 
 
 
 
  

1 0 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 0

0 0 0 0 1

(b)

 
 
 
 
 
 

1 0 0 0

1 1 0 0

1 1 1 0

1 1 0 1

3. Draw the Hasse diagram of Poset with partial order divisibility)
and determine which posets are linearly ordered.

(a) A = {1, 2, 3, 4, 6, 9, 12, 36}

(b) A = {3, 6, 12, 36, 72}

4. A is the set of all 2 X 2 Boolean matrices and the relation ‘R’ is
defined as M R N iff ij ijm n , 1 2i  , 1 2j  .

(a) Find maximal and minimal elements of A

(b) Find the greatest and least element if exist of A.

(c) Find all upper and lower bounds of

1 0 1 0 1 0
B=

0 1 1 1 0 0, ,

       
      
       

(d) Find GLB and L B of above set ‘B’.

5. Draw the Hasse diagram of 30 36 42D , D , D .

6. Determine whether following Hasse diagram represents a Lattice
or not.
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e

b

a

c

d

f

g 5

4

3

2

1

0

Fig. 5.36 Fig. 5.37

a

d

b

c

n

mp

w

y

x

z

Fig. 5.38 Fig. 5.39

5.9 REFERENCES FOR FURTHER READING

(1) Discrete structure by B. Kolman, Hc Busby, S. Ross PHI Pvt.
Ltd.

(2) Discrete structures by Liu.

(3) Discrete mathematics and it’s Apprlications Keneth H. Rosen
TMG.







(i) (ii)

(iii) (iv)
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6

FUNCTION

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 Functions

6.3 Types of function

6.4 Identity functions

6.5 Composite function

6.6 Inverse function

6.7 Binary operation

6.8 Properties of binary operation

6.9 Review

6.10 Unit End Exercise

6.0 OBJECTIVES:

 A function is the central to the study of physics and
enumeration.

 In computer implementation of any program output of any
program can be considered as a function of the input.

 Binary operations have applications in the study algebraic
structures.

6.1 INTRODUCTION:

A function was the heart of the scientific revolution of the
seventeenth century. To understand the general use of function we
must study their properties in the general, which is what we do in
this chapter.

The reader is no doubt familiar with function of the form

( )y f x for instance, if 2( ) 2f x x  , 2x  and (2)y f then the

value of y is 4.
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6.2 FUNCTIONS:

Definition: Let X and Y are non-empty sets. A function f form

X to Y if for each element of a X exactly one element b Y (called
the image of a under f ) such that a is in relation f to b, then is

called function or mapping from X to Y.
If f is a function (mapping) from X to Y we write

:f X Y Or fX Y .

Suppose f is a any function from X to Y. Here set X is called

domain of the function f , and set Y is called co-domain of

function f . The image of a function :f X Y is the

set  ( ) ( ) /f X f a a X  . The pre-image or inverse image of the

function :f X Y is the set  1( ) / ( )f b a f a Y   .

The range of a function :f X Y as the image of its domain. i.e. set

( )f X .

For the function ( )y f x , y is also known as the output

corresponding to the input x.

Note: Every element a X has an image, but it is not necessary that
every element b Y also has pre-image in X.

Example-1. State whether the following are the function or not. If

 , , ,X p q r s and  1,2,3, 4Y  . Give reasons and also find the range

of the function.

(i)       ,1 , , 2 , , 2f p q r .

(ii)         ,1 , ,3 , , 2 , , 4g p q r q .

(iii)         ,1 , ,3 , , 2 , , 4h p q r s .

Solution.
(i) Since the element s X do not have image in Y, therefore f

is not a function from X to Y.
(ii) The element q X it has two different images in Y i.e. 3 and

4 Y . Therefore g is not a function from X to Y.
(iii) By definition of function, each element of X has exactly

one image in Y. Therefore h is a function from X toY. So
range of  h h X   1, 2,3, 4 Y .
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Example-2. Let the function :f X  be defined

by 3( ) 3 2f x x x   . If  1,0,1, 2X   then find range of f .

Solution.
Given that f is the function from X   . By definition of range we

have to find image of each element of X.

   
3

( 1) 1 3 1 2 2f        

   
3

(0) 0 3 0 2 2f    

   
3

(1) 1 3 1 2 6f    

   
3

(2) 2 3 2 2 16f    

Thus the range of f is the set 2,2,6,16 .

6.3 TYPES OF FUNCTION:

Definition: A function :f X Y is said to be injective or

(one–one or monomorphism) if 1 2,x x X : 1 2 1 2( ) ( )f x f x x x   or

equivalently 1 2 1 2( ) ( )f x f x x x   .

Definition: A function :f X Y is said to be surjective or

(Onto, or epimorphism), if every y Y such that ( )y f x

for some x X .

A function that is injective and surjective is said to be bijective, if
:f X Y is a bijective function we may write :f X Y . For e.g.

Let the function :f X Y is defined by

a 1

b 2

c 3

X Y
Fig.6.1

Here ( ) 1, ( ) 2, ( ) 3f a f b f c   .

 1 2 1 2( ) ( )f x f x x x  

f is injective. ( I )

 y Y  x X So that ( )f x y .

 f is surjective. ( II )
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from I and II we say that
f is bijective.

e.g. If :f A B , defined by (1) , (2) , (3)f a f a f b   .

Where    1, 2,3 , , ,A B a b c  . Then check whether the function is

bijective or not?

Solution: If :f A B , defined by (1) , (2) , (3)f a f a f b   .

Where    1, 2,3 , , ,A B a b c  .

1 a

2 b

3 c

A B

Here, (1) (2)f f but 1 2 .

 :f A B is not injective.

 :f A B is not bijective.

.
Example-3 If function :f   is defined by ( ) 3 1f x x 

then prove that f is bijective.

Solution. We first show that f is injective i.e.

1 2 1 2( ) ( )f x f x x x  

So we assume that

1 2( ) ( )f x f x

1 23 1 3 1x x   

1 23 3x x  (Adding 1 both side)

1 2x x  (Dividing both side by 3)

Thus f is injective. (I)

Now to show that f is surjective.

Let y be a real number. We must find value of x such that ( )f x y .

Thus we must find x such that 3 1y x  solving,


1

3

y
x
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 Thus f is surjective. (II)

from I and II we say that
 f is bijective.

6.4 IDENTITY FUNCTIONS

Definition: A function f on X is said to be identity function if

( )f x x for every x X . It is denoted by xI and leaves every input

unchanged. For e.g. Let  1,2,3X  and       1,1 , 2,2 , 3,3f 

which can be written in equation (1) 1f  , (2) 2f  , (3) 3f  is an

identity function of X .

Theorem 6.1. Let :f X Y for each subset A Y ,
1( ( ))f f A A  .

Proof. Let 1( ( ))b f f A

( )f a b  for some 1( )a f A

 b A

 1( ( ))f f A A  .

Theorem 6.2.If f is function form X onto Y then 1( ( ))f f A A  .

Proof. Above theorem 4.1 we prove that 1( ( ))f f A A  .

For opposite inclusion let b A then there exist some element
a X such that ( )f a b because f onto.

( )f a b A   1( )a f A
1( ) ( ( ))f a f f a 

1( ( ))b f f A 
1( ( ))A f f A

Hence 1( ( ))f f A A  .

Theorem 6.3. Let function :f X Y for each subset A X ;

Then 1( ( ))A f f A .

Proof: Let :f X Y for each subset A X .

Let a A  ( ) ( )f a f A

 1( ( ))a f f A (By definition of pre-image)

 1( ( ))A f f A .

Hence 1( ( ))A f f A .
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Theorem.6.4. If f is one-to-one function from X onto Y, then
1( ( ))A f f A .

Proof. In above theorem we prove that 1( ( ))A f f A .

Let 1( ( ))a f f A ( ) ( )f a f A 
'( ) ( )f a f a  For some 'a A .

'a a  Since f is one-to-one.

a A 
1( ( ))f f A A  .

Hence 1( ( ))A f f A .

6.5 COMPOSITE FUNCTION

Definition: Let :f X Y and :g Y Z then the composite of the

function f and g denoted by ( )gof is a function of X Z given by

( ) :gof X Z such that  ( )( ) ( ) ,gof x g f x x X   .

For e.g. Let  , ,X p q r ,  1, 2,3Y  and  , ,Z c d e . Let :f X Y

and :g Y Z be defined by

      , 2 , ,1 , ,3f p q r and       1, , 2, , 3,g d c e . Then the

composite function ( ) :gof X Z may be computed in the following

manner:  ( )( ) ( ) (2)gof p g f p g c   ,

 ( )( ) ( ) (1)gof q g f q g d   ,  ( )( ) ( ) (3)gof r g f r g e   .

Thus ( ) :gof X Z is given by       ( ) , , , , ,gof p c q d r e .

Example-4: Let :f   is defined by ( ) 1f x x  , x  ,

And the function :g   is defined by 2( )g x x , x  .

Find gof and fog .

Solution: Let the composite function :gof   is given by

  2( )( ) ( ) ( 1) ( 1)gof x g f x g x x     . And the composite function

:fog   is given by   2 2( )( ) ( ) ( ) 1fog x f g x f x x    .

gof fog 

Remark; In general the composite function is not commutative.

Theorem 6.5. If :f W X , :g X Y and :h Y Z , then

( ) ( )hog of ho gof .

Proof. It is clear that ( )hog of and ( )ho gof is the function from W

to Z. This two function will be equal if they have the same image to
each element x W .
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Now, (( ) )( )hog of x ( )( ( ))hog f x

( ( ( )))h g f x

( ( ))h gof x

( ( ))( )ho gof x

Which shows that ( ) ( )hog of ho gof .

6.6 INVERSE FUNCTION

Definition: Let :f X Y be a one-to-one function. The inverse of

function denoted by 1f  , is the set of     1 , / ,f y x x y f   .

This, if :f X Y is a one-to-one function, then

( )f x y 1( )x f y  for x X and y Y .

Theorem 6.6. The inverse of a one-to-one and onto function is
unique.

Proof. Let :f X Y be one-to-one and onto function. Let

:g Y X and :h Y X be two different inverse function of f .

Then for 1 2,x x X there exists y Y such that 1( )g y x , 2( )h y x .

1 1( ) ( )g y x y f x     g is the inverse of f .

2 2( ) ( )h y x y f x     h is the inverse of f .

Then it follows that 1 2 1 2( ) ( )f x f x x x   . f is one-to-one.

( ) ( )g y h y  For y Y .

Hence the inverse of a one-to-one and onto function is unique.

Theorem 6.7. The inverse of a one to one function is one to one and
onto.

Proof. Let :f X Y be one-to-one and onto function.

Then for 1 2,x x X there exists 1 2,y y Y such that 1( )f x y and

2 2( )f x y 1
1 1( )x f y  and 1

2 2( )x f y .

Now for 1 2,y y Y ,
1 1

1 2 1 2( ) ( )f y f y x x   

1 2( ) ( )f x f x 

1 2y y 

This proves that 1f  is one-to-one.

Again since f is onto, then for y Y there exists some x X such

that ( )f x y 1( )x f y   f is one-to-one

This proves 1f  is onto.
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Example-5 If function :f   be defined by ( ) 2 3f x x  for

every x , has its inverse ( f is invertible). Find formula for 1f  .

Solution: Let :f   be defined by ( ) 2 3f x x  for if 1 2,x x 

then 1 2( ) ( )f x f x 1 22 3 2 3x x   

1 22 2x x  (Adding -3 both side)

1 2x x  (Divide by 2 both side)

This proves that f is one-to-one. ( f is injective) I

Again, if y , ( )y f x  2 3y x 

3

2

y
x


 

Thus for x there exists
1

( 3)
2

y   such that

1
( 3)

2
f y
 

 
 

1
2 ( 3) 3

2
y

 
   

 

3 3y   y .

This proves that f is onto. ( f is surjective) II

 From I and II we say that f is bijective.

 1f  is exists and it is defined by

1 1
( ) ( 3)

2
f y y    .

Example.6. If each functions f and g is one-to-one then function

gof is one-to-one.

Solution: Let :f X Y and :g Y Z is one-to-one function.

Let 1 2,x x X then 1 2( ) ( )gof x gof x

1 2( ( )) ( ( ))g f x g f x 

1 2( ) ( )f x f x   (g is one-to-one)

1 2x x   ( f is one-to-one)

Hence function gof is one-to-one.

Examlpe.7. If each function f and g is onto then function gof is

onto.

Solution: Let :f X Y and :g Y Z is onto function.

By definition of composite function :gof X Z .To prove that gof

is onto we have to prove that every element z Z is an image
element for some x X under gof . Since g is onto  y Y such

that ( )g y z . Again f is onto  x X such that ( )f x y .

Now, ( )gof x ( ( ))g f x ( )g y z  .

Hence function gof is onto.
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Example.8. Let A and B be two non-empty sets. Let :f A B be

the function then prove that, If 1A and 2A subset of A so that 1 2A A

then 1 2( ) ( )f A f A . Is the converse true?

Solution: Let 1( )y f A  1x A such that ( )y f x .

Since 1 2A A , 2x A such that ( )y f x .

2( ) ( )f x f A  2( )y f A 

1 2( ) ( )f A f A  .

But the converse is not true.
To show that the converse is not true we give counter example.
Let :f A B be the function. ( ) 1f a  , ( ) 1f b  , ( ) 2f c 

  , ,A a b c ,  1,2B 

Let  1 ,A a c and  2 ,A a b be the subset of A .

  1( ) 1, 2f A  and  2( ) 1,2f A  .

 1 2( ) ( )f A f A

1 2( ) ( )f A f A  But 1 2A A  .

EXERCISE 6.1

1. Decide whether or not the following are functions from A to B
where  , , , ,A a b c d e and  , , ,B p q r s . If they are function, give

the range of each. If they are not tell, why?
(i)         , , , , , , ,f a p c q e s d r .

(ii)            , , , , , , , , , ,g a t e s c p b r a s d p .

(iii)           , , , , , , , , ,h a p b s c t d q e r .

2. Each of the following formulas defines a function from  to  .
Find the range of each of the function.
(i) 3( )f x x .

(ii) ( ) sing x x .

(iii) 2( ) 1h x x  .

3. Let  be the set of rational numbers. Let :f   be defined

by ( ) 2 3f x x  , x . Show that f is bijective. Also find a

formula that the inverse function 1f  .

4. Prove the following two result for a finite set T :
(i) If f maps T onto T then f is one-to-one.

(ii) If f is a one- to-one mapping of T into itself, then f is onto.
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5. Let  3X   and  1Y   where  is the set of real

numbers. Let the function :f X Y be defined by
2

( )
3

x
f x

x





is

this function is bijective?

6. Prove that identity function of set T into itself is one-to-one and
onto.

7. If :f X Y and :g Y Z be two one-to-one and onto function,

then :gof X Z is also one-to-one and onto also Show

that 1 1 1( ) : ( )gof Z X f og Z X     .

6.7 BINARY OPERATION

The basic idea underlying the definition of an algebraic
structure is that of a set with a binary operation. Suppose we have a
set A of objects with the property that any pair of them x and y , can

be combined in some way to form an objects z . This can be
expressed by the equation

x y z 

Where the  indicates a binary operation. The word binary
signifying here that two objects are involved. The most familiar
examples are the arithmetical operation like + and  defined on the
set of integers .

Definition: Given a set of element A , then a binary operation  on
the set A is a rule of combination which assigns to each ordered
pair of element ,a b A a unique element c A . We write

symbolically that c a b  .

Example.9. Let  be the set of all natural numbers then the
operation of addition on the set  is a binary operation for if

,a b then so is c where c a b  .

Example.10. Let A be the of all odd integers then the operation of
addition on the set A is not a binary operation for if ,a b A then

c A where c a b  .

Remark: Addition, Multiplication are the binary operation
in , , ,    .

Subtraction is binary operation in ,  . Division is not a binary

operation.



107

6.8 PROPERTIES OF BINARY OPERATION

Commutative: A binary operation * on a set of element A is said to
be commutative, if and only if, for ,a b A ,

* *a b b a

Associative: A binary operation * on a set of element A is said to be
associative, if and only if, for every , ,a b c A ,

*( * ) ( * )*a b c a b c

Distributive: A binary operation * on a set of element A is said to
be distributive over the binary operation on the same set A
elements if and only if for every , ,a b c A ,

*( ) ( * ) ( * )a b c a b a c 

Identity element: An element e in a set A is said to be a identity
element with respect to the binary operation * on A if and only if for
every a A ,

* *a e e a a 

Inverse element: An element b is in a set A is said to be inverse
element of an element a A with respect to the binary operation *,
if and only if,

* *a b b a e 

Example.11. Check the following operation is commutative and
associative. * 10a b a b   , For every ,a b .

Solution: For every ,a b .

(i) * 10a b a b  
10b a  

*b a

’*’ is a commutative.

(ii) *( * ) *( 10)a b c a b c  

10 10a b c    

20a b c    I

( * )* ( 10)*a b c a b c  

10 10a b c    

20a b c    II
From I and II we say that,

*( * ) ( * )*a b c a b c

’*’ is an associative.



108

Example.12. The binary operation * on the set of all real numbers
are defined by *a b a b  . Show that the * is commutative but not

associative.

Solution: Since *a b a b 

b a 

*b a

’*’ is a commutative.
Again,

( * )* *a b c a b c 

a b c  

*( * ) *a b c a b c 

a b c  

If 1, 2, 5a b c   then

( * )* 1 2 5a b c    1 5 4  

*( * ) 1 2 5 1 3 2a b c      

’*’ is not associative.

Example.13. A binary operation * is defined on

 0 as *
9

ab
a b  .  , 0a b  

Show that the * is closed under commutative, associative and also
find identity and inverse element of the binary operation.

Solution: For  , , 0a b c   ,

(i) *
9

ab
a b 

9

ba
 *b a

’*’ is a commutative.

(ii) ( * )* *
9

ab
a b c c


  
 

9

9 81

ab
c

abc
 
 
  

9
*( * ) *

9 9 81

bc
a

bc abc
a b c a

 
 

      
 

( * )* *( * )a b c a b c 

’*’ is associative.



109

(iii) Let e be an identity element in  0 with respect to ‘*’.

*a e a
*

9

a e
a 

9e    9 0 , 0a  

9e  be an identity element in  0 with respect to ‘*’.

(iv) Let b be an inverse element in  0 with respect to ‘*’.

*a b e
* 9a b  9e 

9
9

ab
 

81
b

a
 

81
b

a
  be an inverse element in  0 with respect to ‘*’.

Exercise 6.2

1. Check whether the following binary operation defined on
corresponding set is commutative or associative.
(i) * 2a b a b  for ,a b

(ii) * 3a b a b   for ,a b

(iii) * 2 3a b a b  for ,a b

(iv) 2*a b a b for ,a b

2. Find identity and inverse of element in .
Where * 10a b a b   , ,a b  .

3. A binary operation * is defined as
2 2

*
4

a b
a b  ,  , 0a b   ,

Show that * is commutative and associative also find identity and

inverse element in  0 with respect to ‘*’.

6.9 REVIEW

In this chapter we have covered the following points:

 Function and term related to function ( range, image, Pre-
image).

 Injective function, surjective function and bijective function.
 Identity function, composite function, inverse function.
 Binary operation and their property.
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6.10 UNIT END EXERCISE

1. Define the term give example of each term.: function, range of
function, Image of function, pre-image of the function.

2. Explain all the of function with their definition and counter
example.

3. Decide whether or not the following are functions from A to B

where  , , , , ,A p q r s t u and  , , ,B a b c d . If they are function, give

the range of each. If they are not tell, why?
(i).         , , , , , , ,f p a q b s c r d

(ii)          , , , , , , , ,g t a s a p c r b s d .

(iii)         , , , , , , ,h p a s b t d q c .

4. Each of the following formulas defines a function from  to .
Find the range of each of the function.
(i) 3( ) 2f x x  .

(ii) ( ) cosg x  .

(iii) 3( ) 5 6h x x x   .

5. Find the image set of the function :f   defined by

2

3
( )

1

x
f x

x



.

6. Let  be the set of rational numbers. Let :f   be defined

by ( ) 9 4f x x  , x . Show that f is bijective. Also find a

formula that the inverses function 1f  .

7. Let
5

2
X

 
   

 
 and  0Y   where  is the set of real

numbers. Let the function :f X Y be defined by
1

( )
2 5

f x
x




is

this function is bijective?

8. Show that :f   is given by ( )f x x are neither injective

nor surjective.

9. Let the functions
2

: , ( )
1

f f x
x

  


  , 2: , ( ) 3g g x x   

and : , ( ) 3 2h h x x    then determine the following composite

function (i) hog , (ii) fog , (iii) gof , (iv) foh , (v) hof , (vi) goh .
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10. Let :f   and :g   be two function given by

( )f x x x  for all x and ( )g x x x  for all x . Find fog

and gof .

11. Let :f A B be a function. If 2 1B B B  , then show

that 1 1
2 1( ) ( )f B f B  .

12. Check whether the following binary operation defined on
corresponding set is commutative or associative.
(i) * b aa b a b for ,a b

(ii) * 2 2 8a b a b   for ,a b

(iii) * 2aba b  for ,a b

(iv) *a b ab a b   for ,a b

13. Find identity and inverse of element in .Where * 3a b a b   ,
,a b  .
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7

PIGEONHOLE PRINCIPLES

Unit structure:

7.0 Objectives

7.1 Introduction

7.2 Pigeonhole principle

7.3 The extended pigeonhole principle

7.4 Let us sum up

7.5 Unit End Exercise

7.0 OBJECTIVE

After going through this chapter you will be able to:
 learn different counting techniques like Pigeonhole Principle
 define cardinality of sets
 learn about the properties related to cardinality of sets

7.1 INTRODUCTION

This chapter dedicated to the study of ‘size’ of sets and also
we show how one can efficiently do the counting in a variety of
situations. We represent the basic principle of counting which is
easily derived and extremely useful. We know that some sets are not
finite there for Cantor gives cardinality of infinite sets in 1870’s and
1881’s.

Suppose there are 7 peoples working in an office and a pile
of 8 letters is delivered. Each letter is addressed to are of the people
in the office, and letter are put in the appropriate pigeonholes. Then
we know for sure that some are is going to be lucky and get more
then one letter. Generally it seen obvious that if n m and n

letters are put into m pigeonholes then one pigeonhole will
receive more then one letter.
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If the statement is obvious then so also must be its
cantrapositive, because that is logically equivalent to it. The
cantrapositive is: if every pigeonhole receives at most one letter,
then n m .

Now we can formulate a purely mathematical form of this
principle we suppose that the letters are numbered
1,2,3,4 , n    and the pigeonholes are numbered 1,2,3,4 ,m    for

each letter the address tells us which pigeonhole should receive it.
Thus in mathematical terms we have a rule for assigning letters to
pigeonholes that is a function from set n to the set m . The

condition that every pigeonhole receives at most one letter is
equivalent to the condition that this function is an injection.

1 2 3 ------------- n-1 n

Putting letter into pigeonholes

1 2 3 -------------- m-1 m

Thus the cantra positive from the original statements
essentially: if a function n m  is an injection.

Then it must follow that n m . Now we know that what we
have to prove.

Theorem : 7.1 Let m be a natural number then the following
statements true for every natural number n if there is an injection
from n to the set m then n m .

Proof : We use the principle of induction. The statement is true
when 1n  , since 1 m for any natural number m . The induction
hypothesis is that the statement is true when n taking a specific
value 1k  . We have to deduce that it is true when 1n k  .

Suppose that : n mf   is an injection. Since 1 2k   it

follows that m can not be 1. So 1m s  for some natural number s .
In order to show that 1 1k m s    . We construct an injection

: k sf   and uses the induction hypothesis conclude that k s .

There are two cases:
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(I) Case:1: Suppose that ( ) 1f x s  for all kx . Then let be

the injection defined by    *f x f x for all kx .

(II) Case:2: Suppose that there is an kx such that ( ) 1f x s  .

Then ( 1)f k y  . Where (since f is injection) 1y s  in this case

defined *f as follows.

 *f x y ,  * ( )f z f z ( )z x .

It is easy to check *f is an injection n to m .

1 1 1 1

f *f

y y
x x

k+1 s+1

The theorem is contrapositive from the original statement:
If n m then there is no injection from n m 

7.2 PIGEONHOLE PRINCIPLE

We represent the basic principle of counting which is easily
derived and extremely useful.

Statement: If there n -pigeons to be placed in m -pigeonhole
where m n . Then there is at least one pigeonhole which receives
more then one pigeon.

Pigeonhole Principle

Here is a simple consequence of the pigeonhole principle.
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In one set 13 or more people there are at least two whose
birthdays fall in the same month.

In this case we have to think of putting the people in to
pigeonhole. it can be January, February, March and so on. Since
there are 13 people and only 12 pigeon holes one of the pigeonhole
must contain at least two people.

That this intuitively obvious result can be quite useful is
illustrated by the following example.

Example 1:
If eight people are chosen in any way what so ever at least

two of them will have been born on the same day of the week.

Solution :
Here each person (pigeon) is assigned the day of the week

(pigeonhole) on which he and she was born since there are eight
people and only seven days of the week, the pigeonhole principle.
Tells us that at least two people must be assigned to the same day.

Example 2:
Consider the area shown it is bounded by a regular hexagon.

Whose sides have length 1units. Show that if any seven points are
chosen with in this area then two of them must be on further apart
then 1 unit.

Solution:
Suppose that the area is divided in to six equilateral triangles.

As shown in figure 1.1

1
6 2

5 4 3

If seven points are chosen we can assign each one to a
triangle that contains it.

If the point belongs to several triangles, assigns it arbitrarily
to one of them. The seven points one assigned to six triangles so by
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pigeonhole principle, at least two points must belong to the same
triangle. These two can not be more then 1 unit apart.

Example 3 :
Five points are located inside a square whose sides are of

length 2. Show that two of the points are within a distance 2 of
each other.

Solution :
Divide up the square into four square regions of area 1 unit.

as indicated in figure 1.2.
1 1

1

1

fig.1.2

By Pigeonhole principle, it follows that at least one of these
regions will contain at least two points. The result now follows since
two points in a square of radius 1.can not be further apart then length

of the diagonal of the square is which (by Pythagoras theorem) 2 .

Example 4 :
Show that if any five numbers from 1 to 8 are chosen, then

two of then will add to 9.

Solution :
Constructs four different sets each contains two numbers that

add to 9, as follows        1 2 3 41,8 , 2,7 , 3,6 , 4,5A A A A    each of

the five numbers chosen will be assigned to the set that contains it
.Since there are only four sets. The pigeonhole principle tells that
two of the chosen numbers will be assigned to the same set. These
two numbers will add to 9.

Example 5 :
Fifteen children together gathered 100 nuts. Prove that some

pair of children gathered the same numbers of nuts.
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Solution :
Now to prove that we use method of contradiction.

Suppose all the children gathered a different numbers of
nuts. Then the fewest total number is
0 1 2 3 4 5 6 14 105             , but this is more then 100.
Which is contradiction to our assumption. There fore at least pair of
children gathered same number of nuts.

Example 6 :
Show that in any set of 10 integers there are at least pair of

integers who have same remainder when divided by 9.

Solution :
Set of 10 integers, when it divide by 9, lie in the same residue

classes of modulo 9. i.e. the remainder is 0,1,2,3,4,5,6,7,8. Here
there will be 9 remainder and 10 integers. There fore by pigeonhole
principle, at least one integer has same remainder.

Example 7 :
Any 7 numbers are chosen from 1-12. Show that,

(i). Two of them will add to 13.
(ii). There are two respectively prime integers.

(iii). There are two integers such that 1 is a multiple of the other.

Solution :
(i). We form the box different sets (boxes) each containing two
integers from 1-12 with their sum as 13 as follows.

{1, 12} {4, 9}
{2, 11} {5, 8}
{3, 10} {6, 7}

These six sets are the boxes and the 7 integers chosen from 1-
12 are objects each of these 7 integers will be arranged if the set that
contains it since there are only 6 boxes and 7 objects By Pigonhole
principle, two of the selected numbers will be arranged to the same
box, hence there sum will be 13.

(ii). Two numbers are said to be relatively prime if their G.C.D is 1.

We form 6 different boxes containing two integers form 1-12
such that they are respectively prime as follows,

{1, 2} {7, 8}
{3, 4} {9, 10}
{5, 6} {11, 12}

Since each set contains consecutive integers.
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They are relatively prime each of these 7 integers will be
assigned to the set that contain it these 6 sets are boxes and 7
integers are chosen from 1-12 are objects.

Since there are only 6 boxes and 7 objects 6 < 7.

By pigeonhole principle selected numbers will be arranged to
the same box that is their exists two numbers which are relatively
prime.

(iii). Let A1, A2,………….A7 be seven chosen numbers from 1-12.
We known that any integers n can be written in the form n =

m where k ≥ 0 km. is an odd number.

0

1

0

2

0

1

0

1 2 1

2 2 1

3 2 3

4 2 1

5 2 5

6 2 3

7 2 7

 

 

 

 

 

 

 

a1 = 2k1 x1 , a2 = 2k2 x2……………. a7 = 2k7 x7

Where ki≥ 0.

Xi is an odd integer……………..i=1,2,………….,7.

Each ai is assigned to the odd integer xi where xi is such that ai =
2kl.ai.

Where ki≥ 0.

Corresponding to u chosen integer a1, a2,……….,a7 we have 7 odd
integers.

x1, x2,……….,x7 but we have only 6 odd integers from 1-12.

By Pigonhole principle ai’s corresponding to the same xi.

i.e.7i ,j such that I j
1 i 7
1 j 7 and xi = xj

ai = 2ki.xi

aj = 2kj.xj

aj = 2kj.xi [xi = xj]
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if xi= xj then 2
2

kj

ki

2
2

kj

ki

j

i

a
a





xi

xi

ai is a multiple of aj.

if xi xj then 2
2

kj

ki

2
2

kj

ki

j

i

a
a





xi

xi

aj is a multiple of ai.

There for their exist two integers such that one is a multiple of
another.

Example 8.Show that in any set of 12 integers there are 2 whose
difference is divisible by 11.

Solution :-

Let A1, A2,…………….A12 be 12 selected integers by division
algorithm, 7 unique qi and ri.
s.t. Ai = qi + ri where 0 ri 11
i.e. 0 ri 10
each qi is assigned to its remainder ri.
A1, A2,…………….A12 corresponds to r1, r2,…………….r12 but use
have only 11

Remainders {0,1,2,……………,10}
When a no. is divided by 11

The remainders are 12 i.e. r1,r2,…………….r12 but possible
remainders are 11.
i.e. 0,1,………………..11

By Pigonhole principle, two remainders are same i.e.i , j

s.t.i j, ri = rj 1 i 12,
1 j 12

ai = 11qi + ri

aj = 11qj + rj

=11qj + ri (ri = rj)
i.e.
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two whose difference is divisible by 11.

Two whose difference is a multiple of 11.

7.3 THE EXTENDED PIGEONHOLE PRINCIPLE

If there n -pigeons are assigned to m -pigeonholes, then one of the

pigeonhole must contain at least
 1

1
n

m

 
 

 
pigeons.

Proof: If each contain number more then
 1n

m

 
 
 

pigeons, then there

are at most
   1 1

1.
n n

m n
m m

  
   

 

A pigeon in all this contradicts our assumption. So one of the

pigeonholes must contain at least
 1

1
n

m

 
 

 
pigeons.

Example 9: Show that if 30 dictionaries in a library contains a total of
61,327 pages, then one of the dictionaries must have at least 2045 pages.

Solution: Let the pages be the pigeons and the dictionaries are the
pigeonholes. Assigns each to the dictionaries in which it appears then by
the extended pigeonhole principle are dictionary must contain at least

 61,327 1 61,326
1 1 2045

30 30

 
    

 
pages.

Example 10: Show that if any 29 people are selected then one may choose
subset of 5. So that all 5 were born on the same day of the week.

Solution: Assign each person to the day of week on which he and she was
born. Then 29n  persons are being assigned to 7m  pigeonholes. By
the extended pigeonholes principle at least

   1 29 1 28
1 1 1 5

7 7

n

m

    
        

   
persons.

There fore 5 persons must have been born on the same day of the week.

Check Your Progress :

1. Show that if there are seven numbers from 1 to 12 are chosen
then two of them will add to 13.
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2. Let T be an equilateral triangle whose sides has length 1 unit.
Show that if any five point are chosen lying on inside T. Then

two of them will be more then
1

2
unit apart.

3. Show that if any Eight positive integer are chosen two of them
will have the same remainder when divided by 7.

4. Show that if seven colors are used to paint 50 bicycles at least
eight bicycles must have the same colors.

5. All 82 entering student of a certain high school take courses in
English, History, Maths and science. If three section of each of
these four subjects. Show that there are two students that have all
four classes together.

6. Nineteen points are chosen inside a regular hexagon whose side
length 1. Prove that two of these points may be chosen whose

distance them is less then
1

3
.

7. In any group of 15 people there are at least three born on the
same day of the week?

7.4 LET US SUM UP

In this chapter we have covered the following points:

 If m n then there cannot be an injection from n to m .

 Pigeon hole Principle.

 Extended Pigeonhole Principle and Application of pigeon hole
principle.

7.5 UNIT END EXERCISES

1. Prove that, if m n then there cannot be an injection from n

to m .

2. Write the statement of pigeon hole principle and explain with
example.

3. 10 people want to go to the movies, and there are only 7 cars,
then at least more then one person in the same car.

4. Prove that among the 51 positive integers less then 100. There is
a pair whose sum is 100.
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5. There are 33 students in the class and sum of their ages 430 year.
Is it true that one can find 20 students in the class such that sum
of their ages greater 260?

6. Show that in any set X of people, there are two members of X
who have the same number of friends in X.

7. Seven darts are thrown onto a circular dartboard of radius
10units. Can we show that there will always be two darts which
are at most 10 units apart?

8. Nineteen darts are thrown onto a dartboard which is shaped
as a regular hexagon with side length of 1 unit. Can we prove

that there are two darts within
3

3
units of each other?

9. How many friends must you have to guarantee that at least
five of them will have birthdays in the same month?

10. Show that there must be at least 90 ways to choose six numbers
from 1 to 15 so that all the choices have the same sum.
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8

GRAPH THEORY-I

Unit Structure :

8.0 Objectives

8.1 Introduction

8.2 Application of graphs

8.3 Basic definitions and types of graphs

8.4 Subgraphs and Isomorphisms

8.5 Operations on graph

8.6 Let us sum up

8.7 References

8.0 OBJECTIVES

 Fundamental concepts of graphs

 Types of graphs

 Isomorphism of graphs

 Concept of connectedness in graph

8.1 INTRODUCTION

Graph theory is a subject where no previous knowledge is
assumed. In this subject the focus is on understanding the structure
of graphs and the techniques used to analyse problems in Graph
theory. This subject have many applications in different areas right
from computing to social sciences and to natural sciences. One of
the standard ways of maintaining a graph in the memory of computer
is by means of its adjacency matrix. In simple words a graph is
collection of points and a collection of pairs of points (edges). Some
of the graphs look like.

Fig. 8.1
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8.2 APPLICATION OF GRAPHS

A graph can be used to represent almost any physical
situation involving discrete objects and relationship among them.
Some of examples given below are from among hundreds of
application.

1. Konigsberg Bridge Problem :-

This exciting problem is said to have given birth to graph
theory. The city of Konigsberg is located on the Pregel river in
Prussia. The city occupied the island of Kneiphopf (A) plus areas on
both banks. These regions were linked by seven bridges as shown
below in Fig 8.2 (a). The citizens of Konigsberg had a problem to
start from their home, cross every bridge exactly once and return
home. This problem was represented using dots for land masses and
curves for bridges Fig. 8.2 (b).

A B

C

D

Pregel river

Fig. 8.2 (a)
The bridges of Konigsberg

A B

C

D
Fig. 8.2 (b)

Graphical representation of Konigsberg bridge problem

Euler first represented this situation by means of graph and proved
that the solution for this problem does not exist using Eulerian
graphs.
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2. Travelling salesman problem :-

This problem is stated as follows : A salesman is required to
visit a number of cities during a trip. Given the distance between the
cities, in what order should he travel so that he travels as minimum
as possible?

In the graph theory, the cities are represented by vertices and
the roads by edges. There is a real number associated with each
edge ie in a graph. Such a graph is called weighted graph. w ei( ) is

weight of edge ei .

This problem amounts to finding minimum weight
Hamiltonian circuit in a weighted Hamiltonians graph. No efficient
algorithm for solving this problem is known. However, it is possible
to obtain reasonably good but not necessarily optimal solution.

3. Four colour problem :-

The four colour problem is a partitioning problem.
Partitioning is applicable in many practical problems such as coding
theory, partitioning of logic in digital computers and state reduction
of sequential machines.

This problem is related to colouring of a map. A map is a
partition of the plane into connected region. Can we colour the
regions of given map using atmost four colours so that neighbouring
regions have different colours?

In graph theory, the vertex is considered as a region and an
edge represents regions sharing a boundary. The problem is whether
the resulting graph have chromatic number atmost 4. A graph can be
drawn in a plane without crossing edges, such graphs are planar
graphs.

The four colour problem was posed in 1852 and was settled
by Appel and Haken in 1972. A computer free proof of this problem
is still to be found.
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8.3 BASIC DEFINITIONS AND TYPES OF GRAPH :

The Fig. 8.3. Shows some of the graphs.

e

v

vev

1

2
3

1

2

v1

v2

e2

v3

e1

3

4e

e

v1 v2

v3

v

v4

5

Fig. 8.3.1 (a) Fig. 8.3.1 (b) Fig. 8.3.1 (c)

In Fig. 8.3.1 (a) there are points 1 2 3v , v , v  and the line

segments 1 2e , e . Line segment 1e joins points 1v and 2v while line

segment 2e joins points 2v and 3v .

In Fig. 8.3.1 (b) point 2v is joined to itself by a loop 4e .

There are multiple line segments between points 1v and 3v . In Fig.

8.3.1 (c). There are no line segments but the points 1 2 3 4 5v , v , v , v , v .

All the above figures are the examples of graphs. Each graph
consists of certain number of points called vertices and some pairs of
points joined by line segments which are called as edges.

8.3.1 Definition : Graph, order and size of graph

A graph G is a pair (V, E) where V is nonempty finite set of
vertices and E is family of unordered pairs of elements of V called
edges. V is vertex set of G, E is edge set of G. The number of
elements in V is called order of G. It is denoted by |V|. The number
of edges in graph G is called size of G and denoted by |E|.

In Fig.8.3.1 (a),  1 2 3V = v , v , v  ,  1 2E = e , e , |V| = 3 & |E| = 2.

In Fig. 8.3.1 (b),  1 2 3V = v , v , v ,  1 2 3 4E= e , e , e , e , |V| = 3 and

|E| = 4

In Fig. 8.3.1 (c),  1 2 3 4 5V= v , v , v , v , v , E = 0 (empty), |V| = 5

and |E| = 0
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8.3.2 Definition : Simple graph, Multigraph, Directed graph

A simple graph G (V, E) consists of V, a nonempty set of
vertices and E, a set of unordered pairs of distinct elements of V
called edges. Fig. 8.3.2 (a).

A multigraph G(V, E) consists of set V of vertices, a set E of
edges including multiple edges and loops. Fig. 8.3.2 (b).

A directed graph G(V, E) consists of V, nonempty set of
vertices and E which is family of ordered pairs of elements of V
which are directed edges. Fig. 8.3.2 (c).

Fig. 8.3.2 (a) Fig. 8.3.2 (b) Fig. 8.3.2 (c)
Simple Graph Multiple Graph Directed Graph

8.3.3 Definition : Incidence, Adjacent, Degree, Pendant vertex

See the Fig. 8.3.1 (a) the edge 1e joins vertices 1v and 2v .

The vertices 1v and 2v are called end vertices of edge 1e . The edge

1e is said to be incident on vertex 1v and vertex 2v . The vertices

1v and 2v are adjacent vertices. Thus, two vertices are said to be

adjacent if they are the end vertices of the same edge. Similarly, two
nonparallel edges are said to be adjacent if they are incident on a
common vertex. In Fig. 8.3.1 (a), 1e and 2e are adjacent edges.

 The number of edges incident on vertex v, with self loop counted
twice is called degree, d(v), of vertex v. In Fig. 8.3.1(a)

 2d v = 2 . In Fig. 8.3.1(b)  2d v = 3 .

 The vertex having no incident edge is called an isolated vertex.
Isolated vertices are vertices with zero degree. A graph with all
isolated vertices is called null graph. Fig.8.3.1 (c).

 The vertex of degree one is called pendant vertex. In Fig.
8.3.1(a), vertices 1v and 3v are pendant vertices.
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Theorem 8.3.1 :

The Handshaking Theorem

The sum of degrees of all vertices in graph G is twice the number of
edges in G.

Proof :-
Let G be a graph with e edges and n vertices 1 2 nv , v ,..., v . To show

that  
n

i
i=1

d v = 2e  (3.1)

Each edge contributes two degrees to the sum of degree of
vertices as each edge is incident with exactly two vertices. This
means that the sum of degrees of the vertices is twice the number of
edges. A loop at a vertex also counted twice.

Thus,  
n

i
i=1

d v = 2e

For example consider the graph in fig. 8.3.3

v1 v2

v3 v4

Fig. 8.3.3

       1 2 3 4d v + d v + d v + d v

= 2 + 2 + 3 + 1 = 8 = 2  4 = twice the number of edges.

Theorem 8.3.2 :
The number of vertices of odd degree in a graph is always even.

Proof :-
Consider the vertices of odd degrees and even degrees separately.

The sum of degrees of all vertices is even i.e.  
n

i
i=1

d v = 2e , in a

graph G with n vertices 1 2 nv , v ,..., v and number of edges e.

Also,      
n

i i k
i=1 odd even

d v = d v + d v    (3.2)
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The left side of equation 3.2 is expressed as sum of two sums,
each sum taken over vertices of odd and even degrees respectively.

Since  
n

i
i=1

d v = 2e and the second expression on right hand

side i.e.  k
(say)even

d v = 2s , both are even,

we get    i k
odd even

d v = 2e – d v 

= 2e – 2s
= 2 (e – s)

i.e.  i
odd

d v = an even number  (3.3)

Thus, because of equation 3.3, each  id v is odd.

The total number of terms in the sum must be even, to make
the sum an even number. Hence the theorem.

Types of Graphs

(a) Complete Graphs :

A simple graph in which every pair of distinct vertices is
adjacent is called a complete graph. Denote complete graph on n-
vertices by nk .

Note :
1) In nK , every vertex is adjacent to all the remaining (n – 1)

vertices.
2) The degree of each vertex of nK is n – 1.

Some examples of complete graphs.

1K 2K 3K 4K 5K

Fig. 8.3.4.1 complete graphs
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(b) Regular Graphs :

If all the vertices in a graph G are of the same degree, then G
is called regular graph. If degree of each vertex is ‘n’ then G is said
to be regular of degree ‘n’.

Remark :
(1) All the complete graphs are regular.
(2) A regular graph of degree 3 is known as cubic graph.

The graph of Fig.8.3.4.2 is Petersen’s graph. In this graph
there are ten vertices and degree of each vertex is 3. It is also an
example of cubic graph.

v1

v
2

v3v4

v5
v
6

7

8
9

10

v

v

v

v

Fig. 8.3.4.2 Petersen’s Graph

(c) Bipartite Graph: If the vertex set V of a graph G can be
partitioned into two disjoint subjects say 1V and 2V such that any

edge in G joins a vertex of 1V to a vertex of 2V , then G is called

bipartite graph.

a

b

c

d

e

f
a

b

c

d

e

f

(a) (b)

Here  1V = a, c, e Here  1V = a, c, e

 2V = b, d, f  2V = b, d, f

Fig. 8.3.4.3 Bipartite Graphs
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Remark :

(1) In bipartite graph, it is not necessary that every vertex in 1V is

adjacent with every vertex in 2V . But if it is so and G is simple

graph then G is called complete bipartite graph. A complete
bipartite graph is denoted by Km,n where 1V = m and 2V = n .

(2) Km,n has mn edges as each vertex in 1v joins every vertex in

2V . The Fig. 7.3.4.3 shows 3,3K graph.

(3) The graph 1, nK  is known as star. For example, Fig. 7.3.4.4 is

Star Graph 1, 7K  .

Fig. 8.3.4.4
Star Graph; 1, 7K 

Check your progress :

1. Draw all simple graphs on one, two, three and four vertices.

2. Describe the graph G in the diagram i.e.
i) Find vertex set V(G) and |V(G)|
ii) Find edge set E(G) and |E(G)|
iii) Find the degree of each vertex.
iv) Verify Handshaking theorem for given graphs.

(a) (b)

3. Draw a simple graph, multiple graph and directed graph on seven
vertices.

4. Show that number of odd degree vertices in a graph is always
even.
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5. Consider the graph in following diagram.

v
8

v9

e
7

v3

e
11

v v
2

5
e

6ev5

2
e

3
ev4

4
e

v
6

v
7

Find (i) end vertices of edges 5 4 3e , e , e 

ii) edge incident on vertices 1v and 2v , 4v and 5v , 2v and 3v

iii) pair of adjacent vertices (any three)
iv) pair of adjacent edges (any three)
v) isolated vertices
vi) pendant vertices

6. Draw following graphs
i) 4K

ii) 5K

iii) Regular graph of degree three
iv) Petersen’s graph
v) 2,3K

vi) 5,3K

7. Justify whether the following statements are True or False.
i) A circle with radius one and centre at origin is a graph.
ii) In a simple graph on ‘p’ vertices the degree of each vertex is

atmost –1p .

iii) There does not exist a graph on give vertices whose degrees are
4, 1, 2, 2, 3.
iv) The number of vertices of odd degree is odd.
v) There does not exist a complete graph on n (n > 2) vertices which

is bipartite graph.

8.4 SUBGRAPHS AND ISOMORPHISM

A) Subgraphs

8.4.1 Definition :

A graph H is called a subgraph of a graph G if all the vertices
and the edges of H are also vertices and edges of G. In other words,
V(H) V(G) and E(G) E(H) .
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For example,

Consider Petersen’s graph P given in Fig. 8.3.4.2. The following
graphs 1 2 3P , P , P are subgraphs of P.

v
6

7

8
9

10

v

v

v

v 8v

v
6

7
v

9
v

10v

v1

v2

v3v4

v5

8v

v5
v2

1P 2P 3P

Fig. 8.4.1
Subgraphs of Petersen’s Graph

The graph 0P is not a subgraph of P as shown in Fig. 8.4.2

because the edge set of 0P is not contained in E(P).

v

v4
v3

7
v1

oP

Fig. 8.4.2
Graph which not subgraph of Petersen’s Graph

Note : Subgraph of bipartite graph is bipartite, because all the edges
in the subgraph are edges of original graph.

8.4.2 Definition :

A subgraph H of a graph G is called spanning subgraph of G if H
contains all the vertices of G. In other words    V G = V H .

Let G be a graph as shown in Fig. 8.4.3, then graphs 1 2 3H , H , H of

Fig. 8.4.4 are spanning subgraphs of G.
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v

v4
v3

1

v2

v5

Fig. 8.4.3

v

v4
v3

1

v2

v5

1
v

v2

v5

v4v3

v

v4
v3

1

v2

v5

H1 H2 H3

Fig. 8.4.4
Spanning subgraphs

8.4.3 Definition :

Let G be graph with vertex set V. Let any set S be subset of V, the
induced subgraph <S> is defined as the maximal subgraph of G with
vertex set S.

Note : There is no subgraph of G with vertex set S that contains <S>
properly.

Example :

1) Consider Petersen’s graph P in Fig.8.3.4.2 and its subgraphs
shown in fig. 8.4.1. In this case 1P is subgraph of P induced by

S =  6 7 8 9 10v , v , v , v , v i.e. 1P = < S > . Note that 2P is not an

induced subgraph of G.

2) Consider Fig. 8.4.5 (a). If we take  1 2 4S = v , v , v then <S> = 1H

is not induced subgraph because the graph has vertex set S but

1 2H H i.e. 1H is not a maximal subgraph of G with vertex set S.

Thus, 2H is induced subgraph of G.

G
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G

v1

v4v2

v1

v2

v4

(a) 1H (b) 2H (c)

Fig. 8.4.5
Induced subgraph

B) Isomorphisms of Graphs

8.4.4 Definition :

Two graphs 1G and 2G are said to be isomorphic if there

exists a one-one and onto map T:    1 2V G V G such that if

 1 2 1v , v V G , then the number of edges joining 1v and 2v is also

the same as the number of edges joining    1 2T v and T v .

Note that isomorphism of two graphs preserves adjacency and non-
adjacency of any two vertices.

Example :

Consider following two graphs 1G and 2G in Fig. 7.4.6.

v1 v2

v3

v4
v5

v3

v4v5

v1v2

1G 2G

Fig. 8.4.6
Isomorphic graphs

Define a map from    1 2V G to V G as follows : 1 1v u , 2 2v u ,

3 3v u , 4 4v u , 5 5v u . This map is an isomorphism. 1G and

2G are isomorphic graphs.

v1

v2

v3

v4



136

Remarks :

Two isomorphic graphs have the same number of vertices,
same number of edges and also same number of vertices of given
degree. However, these conditions are only necessary not sufficient.
For example, consider graphs 1G and 2G given in fig. 7.4.7. They

have same number of vertices, same number of edges and also each
of them have exactly one vertex of degree three and four, two
vertices of degree two and five vertices of degree one. Yet, they are
not isomorphic because under the isomorphism, 2v and 5v are not

adjacent in 1G where as in 2 4G , u and 5u are adjacent.

2 4d(v ) = 3 and d(u ) = 3

5 5 5 4 5 5d(v ) = 3 and d(u ) = 3 Thus, v and v uu    

: G 1v5

v
6

7
v

v2

v1 v3v3 v4

8v

9
v
9

v

: G 2
u

5

u
6

7
u

8
u

9
u

2
u

3 u
4

u
u

1

Fir. 8.4.7 Non-isomorphic Graphs

C) Matrix representation of Graphs

Graphs can also be represented by matrices. This method is
most suitable for computer processing. The two representations of
graphs using matrix is by incidence matrix and adjacency matrix.

8.4.5 Definition : Incidence matrix

Consider graph G without loops. Let  1 2 mV = v , v ,...v and

 1 2 nE = e ,e ,..., e Define m x n matrix I(G) as follows :

 m×n
I(G) = aij

where aij = 1, if je is incident at iv

= 0, otherwise
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Example of incidence matrix :

Consider graphs and its incidence matrix, in Fig. 8.4.8

v
2

v3

v4
e
4

3

2

e

e

1
e

5
e

v1

G

v3

v1
v2

e
4

3
e

2
e

1
e

Fig. 8.4.8 Incidence matrix

Note :

1) Incidence matrix is defined for graphs without loops.

2) All entries in incidence matrix is ‘zero’ or ‘one’. Such matrix is
called binary matrix.

3) There are exactly two ones in each column.

4) The sum of the entries in any row is the degree of the
corresponding vertex.

5) A row corresponding to a vertex of degree zero contains all
zeros.

6) Two graphs 1G and 2G are isomorphic if and only if their

incidence matrices  1I G and  2I G differ only by permutation

of its rows and columns.

8.4.6 Definition : Adjacency matrix

Let G be a graph with n vertices, say  1 2 nv , v ,...v and not

having multiple edges. Then the matrix ijA(G) = x 
  of order n  n,

1 2 3 4 5

1

2

3

4

e e e e e

v

v

I(G) v

v

 
 
 
 
 
 
  

1 0 1 0 1

1 1 0 1 0

0 1 0 0 1

0 0 1 1 0

1 2 3 4

1

2

3

e e e e

v 1 1 0 0

I (H) = v 0 1 1 1

v 1 0 1 1
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called the adjacency matrix of G is defined as the matrix whose ijth

entry is given by,

ij = 1x , if there is an edge joining ith and jth vertices.

= 0, otherwise

Example of Adjacency matrix:

Consider graphs and their adjacency matrix, in Fig 8.4.9

1 2 3 4 5

1

2

3

4

5

v v v v v

v

v

v( )

v

v

A G

 
 
 
 
 
 
  

0 0 0 0 0

0 0 1 1 0

0 1 1 1 1

0 1 1 0 1

0 0 1 1 0

a b

cd

H

Fig. 8.4.9 Adjacency matrix

Note :

1) Adjancency matrix is a symmetric square matrix with entries
either zero or one.

2) If G has no loops then the sum of the entries along any row or
any column is the degree of the corresponding vertex.

3) If 1G and 2G are graphs without multiple edges then 1G is

isomorphic to 2G if and only if 1A(G ) can be obtained from

2A(G ) by applying permutation of rows and of corresponding

columns.

v2

v3

v
5

v4

1
v

G

A(H)

 
 
 
 
 
 

a b c d

a 0 1 0 0

b 1 0 1 1
=

c 0 1 0 1

d 0 1 1 0
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Check your progress

1. Draw a bipartite graph whose subgraph is bipartite.

2. Draw any two spanning subgraphs of following graphs.

v3

v
4

v
6

v5

v21
v

v
4

v
4

v5
1

v

v2

v3

v5
v
6

(a) (b)

3. Draw any two induced subgraphs of the graphs given in
Exercise 2.

4. Give any two examples of non-isomorphic graphs.

5. Prove that following graphs are not isomorphic.

6. Determine whether given pair of graphs are isomorphic. If not,
then justify. If isomorphic then show mapping.

a)

b)
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7. Show that there are four non-isomorphic simple graphs on three
vertices.

8. Draw graphs corresponding to following incidence matrix.

i)

e1 e 2 e3 e 4

v1

v 2

v3



 
 
 
  

1 1 0 0

0 1 1 1

1 0 1 1

ii)

1

2

3

4

5

6

a b c d e f g h

v

v

v

v

v

v



 
 
 
 
 
 
 
 
 

0 0 0 1 0 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1

1 1 1 0 1 0 0 0

0 0 1 1 0 0 1 0

1 1 0 0 0 0 0 0

9. Write incidence matrix for simple graphs

e

e

e

e

e

1

2

3

4

5
e

6

1
v

v2

v3

v
4

v5

v
6 i1

v

v2

v3

v
4

v
6

v5

a

b

c

d

e f

g
h

10. Draw Graph with given adjacency matrix.

i)

0 1 0

1 0 1

0 1 0

 
 
 
  

ii)

0 0 1 1

0 0 1 0

1 1 0 1

1 1 1 0

 
 
 
 
 
 

c)

i)
ii)
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11. Represent given graphs using adjacency matrix.

12. Justify whether following statements are true or false.

i) There are eleven non-isomorphic simple graphs on four vertices.

ii) Let H be subgraph of G. If u.v are non adjacent vertices in H then
they are also non-adjacent in G.

iii) If H is induced subgraph of G and if two vertices are not adjacent
in H then they are also not adjacent in G.

iv) Subgraph of subgraph of G is a subgraph of G.

v) An induced spanning subgraph of G is G itself.

vi) Adjacency matrix is symmetric square matrix.

vii) Incidence matrix is defined for graphs with loops.

viii) A row corresponding to a vertex of degree zero in incidence
matrix contains all non zero entries.

8.5 OPERATIONS ON GRAPHS

8.5.1 Removal of vertex or edge

Let G be a graph with  1 2 nV = v , v ,..., v . The removal of

vertex iv results in a subgraph ıG of G consisting of all vertices of G

except iv and all edges of G which are not incident with iv .

iG = G– vı is maximal subgraph of G with vertex set,

 1 2 i–1 i+1 nS = v , v ,..., v , v ,..., v

Example :

Consider the graphs 4G– v and 3G– v obtained by removing vertex

4v and vertex 3v respectively in Fig. 7.5.1.

i) ii)
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1
v

v2

v3 v4

v
5

e
1 2

3

4

5

6
7

e

e

e

e

e

e

1
v

v2

v3

v
5

1
v

v2

v4
v
5

v
6

G 4G - v 3G - v

FIG. 8.5.1(a) Removal of vertex

If E(G) =  1 2 ke ,e ,..., e then removal of an edge say ie from

G results in graph ıG where V(G) = V Gı( ) and E(G )ı contains all

edges of G except ie .

Example :

3G– e and 4G– e are two graphs obtained by deleting edge 3e and

edge 5e respectively from graph G given in Fig. 8.5.1.

1
v

v2

v3 v4

v
5

e
1 2 5

6

7

e

e
e

e

e
4

v
6

v3

v
5 7

e

e
1

1
v v2

5e

6e v4

v
62

e

3
e

3G- e 4G - e

Fig. 8.5.1(b) Removal of edge

Note : When a vertex is removed or deleted all edges incident on
that vertex is removed but when a edge is removed we do not
remove vertices incident at that edge.

8.5.2 Complement of a graph

Let  G = V(G), E(G) , then complement of G is graph G with

vertex set V(G) where in two vertices are adjacent if and only if they
are not adjacent in G.
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Example :

See Fig. 8.5.2(a) for graph G and its complement.

v

5
v

1v 2

v4

v

3

1v

2v

v3
v4

5
v

G G : Complement of G

Fig. 8.5.2(a) Complement of a graphs

A graph G is self complementary if it is isomorphic to its

complement G as shown in Fig. 8.5.2(b).

v1

v2

v
3

v
4

v
5

v
3

v2

v1

v
4

v
5

G G

Fig. 8.5.2(b) Self complementary Graphs

G and G in Fig. 8.5.2(b) are isomorphic under the map

1 1v v , 2 3v v , 5 4v v , 3 5v v , 4 2v v .

8.5.3 Union of two graphs

Let  1 1 1G V , E and  2 2 2G V , E be two graphs. The union

1 2G G of 1G and 2G is defined as graph where vertex set is

1 2V V and edge set is 1 2E E .
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Example :

Union of two graphs i.e. illustrated in Fig. 7.5.3.

v1

v4

v
2

v3

e

e

e

e

1

4

3

2 v3

v1
e
3

v4

u
1

u2
f1 f2

f3

1G 2G

u1

f1

u
2

f2

v3

e1
f3

e2

e
3

v1 v
2

v4

1 2G G 

Fig. 8.5.3 Union of two graphs

8.5.4 Intersection of two graph

Let  1 1 1G V , E and  2 2 2G V , E be two graphs then the

intersection 1 2G G of 1G and 2G is graph consisting of only those

vertices and edges which are both in 1G and 2G .

Example :

Illustration of 1 2G G is 2G as shown in Fig. 7.5.3.

v1
e
3

v4
v
3

1 2G G 

Fig. 8.5.4 Intersection of graph
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8.5.5 Ring sum of two graphs

The ring sum of graphs  1 1 1G V , E and  2 2 2G V , E is

consisting of vertex set 1 2V V and edges that are either in 1G or in

2G but not in both and is denoted by 1 2G G .

Example :

Taking 1G and 2G from Fig. 8.5.3, the ring sum 1 2G G is

f

f
1

2

u

u

1

2

f3

e
1

v v2

v3 v4

e
1

2
e

4

Following is one more example which shows 1 2G G , 1 2G G and

1 2G G . Fig. 8.5.5(a)

v3

e
1

1
v

v
2

5e

6e v5

2
e

3
e

v4

4
e f2

v
5

1
v

3e

v3

v2

f3

f
1e

1
v
6

f4

1G 2G

1
v

3e
v3

v
2

e
1

1
v

v4

v2

v
6

f4
v33e

2
e

e
1

f3
f2

f
1

6e

1 2G G  1 2G G 
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v5

v2

1
v

f
1

v
6

f4

v4 6e

2
e f2 f3

v3

5e4
e

1 2G G

Fig. 8.5.5(a) Intersection, Union and ringsum of two graphs

8.5.6 Fusion and Contraction

A pair of vertices 1v and 2v in graph G is said to be fused if

the two vertices are replaced by single vertex v such that every edge
that was adjacent to either 1v or 2v or both is adjacent to the new

vertex v . The fusion does not alter the number of edges in the
graph but number of vertices is reduced by one.

Example :

Fig. 8.5.6.1(b) is graph obtained by fusion of vertices 1v and 2v in

Fig. 8.5.6.1(a).

v
6

1
v v2

v
4v3

v5

v
6

1
v v2

v
4v3

v5

v = ( ),

(a) (b)

Fig. 8.5.6.1 Fusion of vertices

Contraction of an edge in a graph is obtained by taking an edge with
end vertices u and v, and contracting it. In other words, removing e
and identifying u and v in such a way that the resulting vertex is
incident to those edges (other than e) which were originally incident
to u or v.
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Example :

Fig. 8.5.6.2(b) is a graph obtained by contraction of an edge e in
graph of Fig. 8.5.6.2(a).

v1

v2 v3

v4

vu e

v2

v1

v3

v4
( )u v,

(a) (b)

Fig. 8.5.6.2 Contraction of an edge

8.5.7 Sum of two graphs

Let  1 1 1G V , E and  2 2 2G V , E be two graphs where 1 2V V 

then sum of 1G and 2G denoted by 1 2G G+ is defined as graph

whose vertex set is 1 2V V and consisting of all edges, which are in

1G and 2G , and the edges obtained by joining each vertex of 1G to

each vertex of 2G .

Example :

Fig. 8.5.7 show the sum 1 2G G+ .

1
v

v3

v2v4

1
v

v3

v4
v2

u
1

1G 2G 1 2G + G

Fig. 8.5.7 Sum of two graphs

u
1
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8.5.8 Line graph
The line graph L(G) is a simple graph G whose vertices are in

one-one correspondence with the edge of G, two vertices of L(G)
being adjacent if and only if corresponding edges of G are adjacent.

Example :

See Fig. 8.5.8.

e

e

1

2

e4
e

5
e

3

1
v

v2
v
4

v5

v3

e

e

e

e

e

1

2

3

4

5

G L(G)

Fig. 8.5.8 Line Graph

8.5.9 Cartesian product of 1G and 2G

Let  1 1 1G V , E and  2 2 2G V , E . Then carterian product of

1G and 2G . 1 2G × G is graph with vertex set V specified by putting

u adjacent to v if and only if

i) 1 1u v= and 2 2 2u v E or

ii) 2 2u v= and 1 1 1u v E

Example :

See Fig. 8.5.9

vu
1 1

u
2 v

2
w

2

1G 2G

( ),u v1 2
( ),u u1 2

( ),v u1 2
( ),v v1 2

( ),v w1 2

( ),u w1 2

1 2G x G

Fig. 8.5.8 Cartesian product of graphs
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Remark :

If  1 1 1V = u , v and  2 2 2 2V = u , v , w then cartesan product of sets

1 2V ×V is

            1 2 1 2 1 2 1 2 1 2 1 2 1 2V × V = u , u , u , v , u , w , v , u , v , v , v , w The

points in 1 2V V are vertices of 1 2G ×G .

At this juncture, let us take a break and do some problems and
check if we have understand the basic concepts of graphs.

Check your progress

1. Consider the graphs given below

e
1

e
2

e
3

e
4

1
v v2

v
4

v
4

v3

1
v

v2 v3

v5
v
4

v
4

e

e

e

e

1
2

3

4

5
e

e
6

e
7

1G 2G

Draw the graph
i) 1 2G – v

ii) 1 1G – v

iii) 2 5G – v

iv) 2 3G – v

v) 1 4G – e

vi) 1 3G – e

vii) 2 3G – e

viii) 2 7G – e

2. Draw a graph which is self complementary.

3. Draw complement of graphs given in exercise 7.5.1.

4. Draw the graphs 1 2G + G if 1G and 2G are given as follows :
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1
v v2

v
4

v
4

v3

e1

e
2

e
3

e
4

v5

e
5

e
6

e
7

e1

e
3

1
v v2

v3

f3
u

3f1

f4

u
2

f6

u
1f2

f5

1G 2G

5. Draw the graph obtained by fusion of vertices 1v and 2v in

graphs given in exercise 7.5.1.

6. Draw the graph obtained by contracting the edge 1e in the

graphs given in exercise 7.5.1.

7. Let  1 1 1G V , E and  2 2 2G V , E be two graphs with

 1 1 1V = u , v ,  1 1 1E = u , v while  2 2 2V = u , v ,  2 2 2E = u , v .

Draw the graph of Cartesian product of 1G and 2G .

8. Justify whether following statements are True or False.

i) The ring sum of two complete graphs is complete.

ii) If G, H, K are simple graphs then
G H K G H G K   ( ) = ( ) ( )

iii) The complement of every graph and its line graph are
isomorphic.

iv) Adjacency matrix of simple graph and its complement is
different.

v) 1G and 2G is regular if  1 1 1G V , E ,  2 2 2G V , E are two

graphs with 1V 3= , 1E 2= , 2V 4= and 2E 3= .

8.6 LET US SUM UP

In this chapter, we have learnt basic concepts of graph theory
to start with. The understanding of graph theory starts with this basic
concepts as vertex, edge, edge set and vertex set. The different
operations on graph lead to a big family of graph. Isomorphism of
graphs tells vs about graphs which are isomorphic.



151

8.7 REFERENCES

1. Discrete Mathematical structures by Kolamn, Busby and Ross.
Pearson education.

2. Introduction to graph theory by Douglas B. West.

3. Discrete Mathematics and its applications by Kenneth. H.Rosen.
McGraw Hill edition.

4. Graph theory by Frank Harary. Narosa Publication.

5. Discrete Mathematics by Norman Priggs. Oxford.





152

9

GRAPH THEORY-II

Unit Structure :

9.0 Objectives

9.1 Introduction

9.2 Walks, paths and circuits

9.3 Connected and disconnected graphs

9.4 Euler paths and circuits

9.5 Hamiltonian paths and circuits

9.6 Colouring of graphs

9.7 Let us sum up

9.8 References

9.0 OBJECTIVES :

After going through this chapter you will be able to:

 find walks, paths and circuit in a graph

 understand Eulerian graphs and circuits

 understand Hamiltonian graphs and circuits

 know about colouring the graphs

9.1 INTRODUCTION :

We have seen in earlier chapter, different operation of graphs
and different types of graphs. In this chapter we are actually perform
operation on graphs, so as to get circuit with a particular condition
imposed on the edges and vertices of a graph joining. The edges and
vertices in continuity we get a cycle or circuit. We can colour the
edges and vertices of graph with different colours and can also find
minimum number of colours required to colour a graph.
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9.2 WALKS, PATHS AND CIRCUITS

Consider the following graphs.

1G 2G 3G

4G 5G

Fig. 9.1

In Fig. 9.1, observe graphs 1G and 3G . We can travel from

one vertex to another just by traversing the edges. This is not
possible in case of the graphs 2G , 4G , 5G as there is some vertex

from which the edge is not there to another vertex. At this stage we
are in position to make some more definitions.

Definition 9.1 :

A walk in a graph is defined as a finite alternating sequence of
vertices and edges, beginning and ending with vertices such that
each edge is incident with the vertices preceding and following it
and occurs exactly once.

Definition 9.2 :

The vertices at the beginning and at the ending of a walk are called
terminal vertices. Wherever terminal vertices are same, we call the
walk as a closed walk. A open walk is one which is not closed.

Definition 9.3 :

A open walk in which no vertex is repeated is called a path.

Definition 9.4 :

A closed walk in which no vertex is repeated is called a circuit or a
cycle.
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Definition 9.5 :

The number of edges in a walk is called the length of the walk.

Let us illustrate all the definitions from 9.1 to 9.5 with help of graph
in Fig. 9.2.

e

e

e
e

e

e

e

e

e

e

v v

v v

v

v

1

2

3

4

5

1

2

3

4

5

6

7
8 9

10

11

7

e

v6

Fig. 9.2 A closed walk

An open walk :

7 3 1 1 1 2 2 5 5 11 4 10 6 4 2v e v e v e v e v e v e v e v . This is not a path as

vertex 1v and 2v are repeated. The length of the walk is 7.

The closed walk :

7 7 6 8 7 6 3 9 4 10 6 4 2 2 1 3 7v e v e v e v e v e v e v e v e v . The length of this

walk is 8. This is not a circuit as vertex 6v and 7v are repeated.

The path :

5 11 4 10 6 7 7 6 3v e v e v e v e v . Length of the path is 4.

The circuit or cycle :

7 7 6 10 4 9 3 6 7v e v e v e v e v . The length of cycle is 4.

Lemma 9.1:

Every uv walk contain uv path. u and v are terminal vertices.

Proof :The proof is by induction on the length  of a uv walk say W.

Step 1:Suppose  = 0 . It means the length of walk W is zero. It
means W contains single vertex u (=v). This vertex is u v
path of length zero.
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Step 2:Suppose  1 and the result holds for walks of length less
than  .

Step 3:If W has no repeated vertex then its vertices and edges form a
uv path. If W has repeated vertex w then delete all the edges
and vertices appearing between w. This gives a smaller uv
walk say W. W is contained in W.

As length of W is less than  , induction hypothesis holds and
W is contained in W.

Theorem 9.2:

Let G be a graph with adjacency matrix A.    1 2 nV G = v , v , ..., v

then the number of different paths of length r from iv to jv , where r

is positive integer equals to ijth entry of nA .

Example 1:

Find the number of paths from a to c for the graph in Fig. 8.3 of
length 3.

a b c

d e

Fig. 9.3

Solution : Adjacency matrix A corresponding to graph in Fig. 9.3 is

a b c d e

a 0 0 0 1 1

b 0 0 1 1 1

A = c 0 1 0 0 1

d 1 1 0 0 0

e 1 1 1 0 0

 
 
 
 
 
 
  

then 3

0 1 2 4 5

1 2 4 5 6

A = 2 4 2 2 4

4 5 2 0 1

5 6 4 1 2

 
 
 
 
 
 
  

We find 3A as we want to find path of length 3.
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Number of paths between vertices a and c is the (1, 3)th entry of 3A .

(1, 3)th entry of 3A is two.

The paths of length 3 between the vertices a and c are two.

Check your progress

1) List all the different paths between vertices 5 and 6 in following
Figure 8.4. Give the length of each path.

1

2

3

4

5

6

a
b

c

d
e

f

g

h

i

j

Fig. 9.4

2) List atleast four cycles in graph given in Fig. 8.4.

3) Show that every uv-walk contains a uv-path.

4) Find the number of paths from vertex 1 to 3 for the graph in
Fig. 9.5 of length 3.

1

2

3

4

5

Fig. 9.5
5) Judge whether true or false.

1) Any uv-walk contains a uv-path.
2) The union of any two distinct uv-walks contains a circuit.
3) The union of any two distinct uv-path contains a circuit.

6) List all the paths that begin at vertex 2 in Fig. 8.4.
7) List all the circuits that begin at vertex 3 in Fig. 8.5.

8) In the following graph
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1 2 3

4

567

Fig. 9.6

i) List all paths of length 2 starting from vertex 2 and 5.
ii) Find the cycle at vertex 7 & 4.
iii) List all paths of length 1.
iv) List all paths of length 3.

9.3 CONNECTED AND DISCONNECTED GRAPHS

A graph is connected if we can reach any vertex from any
other vertex by traversing along the edges. As seen in Fig. 8.1 1G

and 3G are connected while 2 4 5G ,G ,G are disconnected. A

disconnected graph consists of two or more connected graphs. Each
of connected parts in disconnected graph is the component of the
graph. More formally let us give definition of all these.

Definition 9.6:

A graph G with u, v V(G) is said to be connected if G has a

uv path otherwise G is said to be disconnected.

Definition 9.7 :

A disconnected graph is not a single piece. Each single piece
in a disconnected graph is called a component. A component is
maximal connected subgraph of given disconnected graph. For
example, in Fig.9.1, 2G has two components.

and

4G has two components say 1K and 2K

1H : 2H :
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5G has five components each having a single vertex.

Theorem 9.3:

A graph G is connected if and only if given any pair u, v of
distinct vertices, there is a path from u to v in G.

Proof :Let G be disconnected. Then G is expressed as a disjoint
union of subgraphs. Choose two vertices u and v which
belong to two of these different subgraphs say 1G and 2G .

Since G is union of mutually disjoint subgraphs, we cannot
find an edge which is incident to vertices in 1G and 2G .

Hence we cannot find a path from u to v. This is a
contradiction. G, therefore cannot be expressed as union of
mutually disjoint subgraphs.

G is connected.

Conversely, assume that G is connected and there are two
vertices in G such that there is no path between them. Let u
& v be these vertices. Denote by 1G the induced subgraph

formed by all those vertices w of G such that there is uw path
in G. Let 2G denote the complement of 1G . Then G is union

of these two mutually disjoint subgraphs i.e. G is
disconnected. This is contradiction. Hence we cannot find a
pair of vertices such that there is no path between them.

Theorem 9.4:

Let G be a simple graph on n vertices. If G has k –
components then the number q of edges of G satisfies the inequality,

    
1

n - k q n - k n - k 1
2

  +

Check your progress

1) Draw complete graph on seven vertices. Is this graph connected?

2) Give an example of a regular, connected graph on six vertices
which is not complete.

1K : 2K :
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3) Construct a graph with 8 vertices 16 edges and degree of each
vertex 4.

4) Judge whether the following are true or false.
i) A graph G is connected if and only if it has exactly one

component.
ii) Complement of connected graph is connected.
iii) Subgraph of a connected graph is also connected.
iv) If G is graph on 5 vertices and G has two components then

number of edges of G is atmost 12.

5) Let u and v be any two vertices of a connected graph G. Show
that there exists a uv – walk containing all vertices of G.

6) Draw a simple (p, q) graph G to show that G contains unique
circuit iff G is connected & p = q.

7) Which connected graphs can be both regular and bipartite?

8) Give an example of regular connected graph on six vertices that
is not complete.

9) Give an example of a graph on five vertices with exactly two
components.

10)Give an example of a graph that is regular but not complete, with
each vertex having degree three.

11)Give an example of a graph with seven vertices and exactly three
components.

9.4 EULER GRAPHS :

In this section we consider the task to travel a path using each
edge of the graph exactly once. The problem is to draw a figure
without lifting the pencil from the paper and without retracing a line.

Definition 9.8:

A path containing all the edges in a graph is called an
Eulerian path.

Example 2 :

The figure 8.4.1 shows examples of Eulerian graphs and non
Eulerian graphs.
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1
v

6
v

5
v

4
v

3
v

2
v

e
4

e
1

e
2

e
3

e
6

e
5

e
7

e
10

e
8 e

9

e
1

1
v

e
5

e
6

e
7

e
11

e
12

e
2

e
10 e

8

e
4

8
v

6
v

5
v2

v

7
v

3
v

4
v

e3

e
9

(a) Eulerian graphs

(b) Non – Eulerian Graphs

Fig. 9.4.1

Definition 9.9:

A closed walk containing all the edges in a graph is called an
Eulerian circuit.

A graph is Eulerian graph, if it has a closed walk containing
all the edges.

In Fig. 9.4.1(a) graph 1G is Eulerian because it contains Eulerian

circuit 1 1 2 2 3 3 4 4 5 5 6 6 1 7 5 8 2 9 4v e v e v e v e v e v e v e v e v e v 10 1e v .

In Fig. 9.4.1(a) graph 2G is Eulerian because it contains Eulerian

circuit

1 1 2 2 3 3 4 4 2 5 5 6 6 7 7 8 4 9 3 10 7v e v e v e v e v e v e v e v e v e v e v

11 8e v 12 1e v .

Lemma 9.5:

If every vertex of a graph G has degree atleast 2, then G
contains a cycle.
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Theorem 9.6: Characterisation of Eulerian graph :

A connected graph G is Eulerian if and only if every vertex of
G is of even degree.

Corollary 9.7:

Let G be connected with exactly two odd vertices say u and v.
then there is a uv walk in G that contains all edges of G.

Proof :Let G be the graph obtained from G, by adding an edge
joining u and v. The degree of each vertex in G is even and
therefore it has Eulerian walk beginning with u and ending

with u. Any Eulerian walk for Gי must contain the edge uv.
Otherwise, G itself would be Eulerian and u as well as v will
be of even degree which is a contradiction. Let therefore,

1 2 iv u v v ..... v v,      be Eulerian walk of Gי .

Then the walk 1 2 iu v v .... v v     got by removing edge

uv is required uv walk in G.

Remark: As mentioned in 7.2 about application of graphs, the
Konigsberg bridge problem was to find an Eulerian walk in
Eulerian graph. Euler proved that it is impossible to get
Eulerian walk in the given graph. Therefore, there is no
solution to Konigsberg bridge problem.

Next, we give an algorithm that produces an Euler circuit for
a connected graph with no vertices of odd degree.

Definition 9.10:

An edge is called a bridge or cut – edge in a connected graph
if deleting it would create a disconnected graph.

See Fig. 8.4 for an example of a bridge. The edge 5e is a

bridge. Remove 5e to get disconnected graph 5G - e .
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1
v

v2

v4

v6
v8

v7

v34e

1e

2e

3e

5e

6e
8e

7e

1
v

v2

v4

v3
v7

v6
v8

G 5G - e

Fig. 9.4.2 A bridge or cut-edge

Algorithm 9.11 : Fleury’s algorithm

Let G be an Eulerian graph and v be any vertex of G. Starting
from v, we traverse the edges of G subject to following conditions

1. Erase an edge that is traversed

2. Erase the isolated vertices, if any.

3. Traverse a bridge only if there is no other alternative.

The procedure is possible and finally we arrive at an empty
set. The successive sequence of edges which were removed will
form an Eulerian walk for G.

Example 3: To illustrate Fleury’s algorithm.

Use Fleury’s algorithm to construct Euler circuit for the graph
in Fig. 9.4.3.

v
2

v
3

v
4

v
5

v v
1

e
1

e
6

e
5

e
4

e
3

e
9 e

2

e
8

e
7

Fig. 9.4.3

Start with vertex v.

Step 1 : Traverse any edge incident at v say 1e
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Step 2 : Erase the edge that is traversed. The graph will now look
like this

v
2

v
3

v
4

v
5

v v
1

e
2

Step 3 : Traverse the edge 2e .

Step 4 : Erase edge 2e the graph will now be

v
2

v
3

v
4

v
5

v v
1

e
3

e8

e9

At 5v we have three choices for edges viz, 3 8 9e ,e ,e . But edge

9e is bridge. Thus, by condition 3 of the algorithm we cannot

traverse this edge.

Step 5 : Traverse edge 3e .

Step 6 : Erase edge 3e . The graph will be

v
2

v
3

v
4

v
5

v v
1

e
4

Step 7 : Traverse 4e and erase 4e to get graph.
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v
2

v
3

v
4

v
5

v v
1

e
5

Though 4e was bridge but we had no alternative.

Step 8 : Erase vertex 4v .

Step 9 : Traverse 5e and erase 5e to get the graph.

v
5

v
3

v v
1

v
2

e
6

Step 10 : Traverse 6e and erase 6e to get the graph. Also remove

vertex 2v .

v
5

v
3

v v
1

e
7

Step 11 : Traverse 7e , erase 7e and remove 1v to get,

v
5

v
3

v

e
8

Step 12 : Traverse 8e , erase 8e and remove 3v to get
v
5

v

e
9
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Step 13 : Traverse 9e , erase 9e and remove 5v . The graph left

is single vertex.

Step 14 : Remove v v .

The sequence of edges erased in order were

1 2 3 4 5 6e , e , e , e , e , e ,

7 8 9e , e , e . Thus we get Eulerian circuit

1 5 4 3 2v v v v v v     1 3 5v v v v    observe that

each edge of G is traversed exactly once. However, the vertex may
be traversed more than once. The graph should remain connected at
every step.

Check your progress

1) Make adjacency and incidence matrix of any one Eulerian graph.
What can you say about them?

2) Draw a Eulerian graph on 6-vertices.

3) Which of the following graphs have an Eulerian circuit, an
Eulerian path but not an Eulerian circuit or neither? Give reason
for your choice.

a) b)

c) d)

e)
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4) Use Fleury’s algorithm to find an Eulerian path for the following
graphs :

5) Judge whether the following are true or false.

i) Eulerian graph is connected.

ii) nK is Eulerian if and only if n is even.

iii) m,nK is Eulerian if and if m and n are even.

iv) Line graph of Eulerian graph is Eulerian.

v) Petersen’s graph is Eulerian graph.

9.5 HAMILTONIAN GRAPHS :

We have seen the walks which include all the edges of the
graph. Now we see the graph which contains paths that contain each
vertex of the graph. These graphs were named after Sir William
Rowan Hamilton who introduced such graphs.

a) b)

c) d)

e)
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Definition 9.11:

A cycle which passes through each vertex of the graph called
Hamiltonian cycle or circuit. We say Hamiltonian cycle spans the
graph. A Hamiltonian path is a path that contains each vertex
exactly once. A graph having a Hamiltonian cycle is called
Hamiltonian graph.

Note : Hamiltonian graph contains a closed path that includes all the
vertices of the graph.

Example 4 :

Consider the graphs in Fig. 8.5.1.

1
v

6
v

5
v

4
v

3
v

2
v 1

u

6
u5

u

4
u

3
u

2
u

(a) (b)
Fig. 9.5

The graph of Fig. 9.9.1(a) is Hamiltonian graph. The
Hamiltonian cycle is 1 2 3 4 5 6 1v v v v v v v      .

The graph of Fig. 9.9.1(b) is not Hamiltonian graph.
However, the walk 6 3 4 5 1 2v v v v v v     is the path that

includes all the vertices but it is not closed.

Example 5 :

Any complete graph nK has Hamiltonian cycle. Hence nK is

Hamiltonian graph.

Note : If G is graph on n vertices and G has Hamiltonian circuit then
G must have atleast n edges.

Remark :1)It is not always possible to determine a Hamiltonian
path or cycle.
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2)If there is Hamiltonian path or circuit in a graph then
there is no efficient way found to trace it, unlike,
Eulerian path or cycle.

Some observations of Hamiltonian graphs are as follows :

Theorem 9.8 :

If G is Hamiltonian then for every non empty proper subset S
of V(G), W(G – S) |S| where W(H) denotes number of components
of any graph H and |S| denotes number of elements of S.

Proof :Let C be Hamiltonian cycle of G. If S is any proper non –
empty subset of V(C) = V(G). If G = C, we are through.
Otherwise G can only be C with more edges. But the addition
of edges to C can only decrease the number of components of
C – S.
Therefore, W(G – S) W(C – S)

i.e. W(G – S) | S |

Remark : The above theorem is useful in showing that some graphs
are non-Hamiltonian. For example, the complete bipartite
graph m, nK  where m n is non-Hamiltonian. Let  1 2V , V be

partition of vertex set Km,n where 1V = m . The graph

1Km, n – V is totally disconnected with n – vertices as its

components. Thus,  1 1W Km,n – V = n m =| V |

Note : The converse of theorem 7.9.4 is not true. For example, the
Petersen’s graph satisfies the condition of the theorem but is
not Hamiltonian.

Theorem 9.9 :

A Hamilton graph contains no cut-vertices.

Theorem 9.10:

Let G be simple graph with n vertices. Suppose a and v is a
pair of non – adjacent vertices such that deg.(v) deg.(u) n+ . Then G

is Hamiltonian. The proof of above two theorems is omitted but
from it we can prove the following :
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Corollary 9.11 :

G has Hamiltonian cycle, if each vertex has degree greater

than or equal to n
2

.

Proof :The sum of the degrees of any two vertices of G is
n n = n

2 2
+ . Thus, all conditions of theorem 7.9.6 are

satisfied. Hence, G has Hamiltonian cycle i.e. G is
Hamiltonian graph.

Theorem 9.12 :

Let G be a graph with n-edges. Then G has Hamiltonian

cycle if  21
m n – 3n 6

2
 + where n is number of vertices of G.

Proof :Suppose u and v are non-adjacent vertices of G.

Let H be the graph obtained by deleting vertices u and v
along with any edges having u or v as end point. Then H has
n – 2 vertices. The number of edges of H is m – deg(u) – deg
(v). [If u and v were adjacent then one edge less will be
removed] The maximum number of edges H could possibly

have is n –2
2C . This happens if there is an edge connecting

every distinct pair of vertices.

Thus, the number of edges of H is atmost n –2
2C .

 

 
n –2

2
n – 2 !

C =
2! n – 2 – 2 !

 
 
n – 2 !

=
2! n – 4 !

=
  n – 2 n – 3

2

=  21
n – 5n 6

2
+

Therefore, 21
m – deg(u) – deg(v) (n – 5n 6)

2
 +

21
deg(u) deg(v) m – (n – 5n 6)

2
 + +

Given that 21
m (n – 3n 6)

2
 +
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Therefore, 2 21 1
deg(u) deg(v) (n – 3n 6) – (n – 5n 6)

2 2
+ + +

= 2 21
(n – 3n 6 – n 5n – 6)

2
+ +

=
1

(2n)
2

= n

The condition of theorem 9.10 is satisfied and G has
Hamiltonian cycle.

Remark : The converse of theorem 9.10 and theorem 8.12 is not
true. Example, consider the graph G in Fig. 9.5.2. |V(G)| = n
= 8. Each vertex has degree 2. If u and v are vertices of G
then deg(u) deg(v) = 4+ .

vu

Fig. 9.5.2

The total number of edges is 8. The conditions in the theorem
is not satisfied still we can find a Hamiltonian cycle in G.

Definition 9.12 :

A graph G is called a weighted graph if there is a positive real
number associated with each edge of G. The real number is called
the weight of the corresponding edge. The weight of subgraph H of
a weighted graph is defined as the sum of weights of all edges of H.

Travelling Salesman Problem :

As mentioned in 9.2 about the application of graph, the
traveling salesman problem is to find a minimum weight
Hamiltonian cycle in a weighted Hamiltonian graph.

No efficient algorithm for solving the traveling salesman
problem is known. However, it is possible to obtain a reasonably
good but not necessarily optimal solution. One such method is given
below. First find Hamiltonian cycle G. Then search for another
Hamiltonian cycle of smaller weight as follows :

G
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vu

xy

Fig. 9.5.3

Let  u, v and  ,x y be two non adjacent edges in C such that

the vertices u, v, x and y occur in that order in C. See Fig. 8.5.3 If

 u, x and  v, y are edges and        w u, w y, v < w u, v w , yx x+ +

then replace edges (u,v) and  ,x y in C by edges  u, x and (v,y).

The resulting cycle Cיwould be Hamiltonian and will be of less

weight than C. continue above process with Cי , until one gets
reasonably good Hamiltonian cycle.

Note : The initial Hamiltonian cycle itself may be chosen such that it
has comparatively small weight.

Example 6 :

Find the Hamiltonian cycle of minimal weight for the following
graph 9.5.4.

A

B

D

C

EF

G

12

10

15

14

15

12

20 16

16

12

10

Fig. 9.5.4 Hamiltonian circuit

Consider vertex A vertex. Vertices B, G and D are adjacent to
A. w(A,B)=12, w(A,D) = 20 and w(A,G)=12. We have to choose
minimum weight. Let us consider edge AB with weight 12. As we
reach B there are two choices either C or D. Min {w(B,C), w(B,D)}
= w(B,C)=10. So we reach C with w(B,C) = 10. C is adjacent to F
and w(C,F) = 15. At F there are three choices either B, G or E.
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Min {w,(F,B), w(F,G), w(F,E)}

= w(F,E) = 10.

Thus, we take vertex E. So far we have traversed as follows :
12 10 15 10

A B C F E    . From E we reach D, w(E,D) =
12. From D we have to go to G, as B is already traversed. From G
we reach A back again. Thus, the Hamiltonian cycle of minimal
weight for the graph in Fig 8.5.4 is

16

12
A B C F E

G D
12 12

101510

The weight of this cycle is 87 as

w(AB) + w(BC) + w(CF) + w(FE) + w(ED) + w(DG) + w(GA)
= 12+10+15+10+12+16+12
= 87

Check your progress

1) Give two Hamiltonian circuits in 5K that have no edges in

common.
2) Give example of Hamiltonian graph which is not Eulerian.

3) How many distinct Hamiltonian cycles are there in 4K and 6K ?

4) Show that there are only three Hamiltonian graphs on 6-vertices,

6C , 6K and 3,3K .

5) Give one example of an Eulerian graph which is not
Hamiltonian.

6) Justify whether true or false.

i) Every Hamiltonian graph is connected.

ii) An induced subgraph of Hamiltonian graph is Hamiltonian.

iii) A simple graph which is both Hamiltonian and Eulerian is
necessarily a cycle.
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7) Which of the following graphs have Hamiltonian circuit, a
Hamiltonian path but no Hamiltonian circuit, or neither. Trace
the circuit if graph has Hamiltonian circuit.

8) Find a minimal weight Hamiltonian circuit for the graphs given
below.

A B

C D

E

F

G

2

3

4
5

2

54

4

5

6

H

6

2

a) b)

c) d)

e) f)

A

B

C

D H

F G

E

3
3

2

2

2

3

4

45

5

6

6

a) b)
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A B

D

C

EFG

I 1

2

3
4

5

H

1

2

2

2

2

2

2

44
3

5

2

9.6 COLOURING OF GRAPHS :

Definition 9.13 :

Consider a graph G. A vertex colouring or colouring of G is
an assignment of colours to the vertices of G such that adjacent
vertices have different colours.

A graph is said to be k-colourable if the vertices of G are
coloured using atmost k-colours such that adjacent vertices receive
different colours.

The chromatic number denoted by χ(G) of a graph G is the

minimum number of colours needed to colour G.
Note : If a graph is k-colourable then it is (k+1) – colourable.

Examples :

1) Kp is p-colourable..As each pair of vertices is adjacent.

 χ Kp = p . Consider 4K in Fig. 8.6.1

Fig. 9.6.1 Chromatic number of 4K is 4.

 4χ K = 4

2) Kp is complement of Kp . It is disconnected graph with p

components as vertices. Kp is 1-colourable  χ Kp = 1. As

shown in Fig. 8.6.2, 4K is 1-colourable and  4χ K = 1.

c)
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Fig. 9.6.2 Chromatic number of 4K is one.

3) Consider bipartite graph m, n 1 2K (V , V )  with m-vertices in 1V and

n-vertices in 2V . No two vertices of 1V and 2V are adjacent.

But every vertex of 1V is adjacent to each vertex of 2V .

Therefore, every vertex of 1V can be coloured by colour α and

all vertices of 2V can be coloured by colour β . Thus

 m, nχ K = 2 . Consider 2,3K as in Fig. 9.6.3.

( )a

( )b

( )a

( )b

v
1

21 3

v
2

u u ( )b u

Fig. 9.6.3 : Colouring of 2,3K

   1 1 2 2 1 2 3V = v , v ; V = u , u , u    , Chromatic number of 2,3K is two.

Theorem 9.13 : Graph G is 2-colourable iff G is bipartite

4) Consider the graph G in Fig. 9.6.4.

v
1 ( )a

v2 ( )b

v3

v
4

( )b

v5

(w)

9( )

G

Fig. 9.6.4

Let vertex 1v be coloured by colour α . Then 4v and 5v

must receive two distinct colours say β and 9 different from α .

Now, vertex 3v is adjacent to 1v , 4v and 5v . Therefore, it cannot



176

have colour α,β,9 . Hence 3v will receive colour  . The vertex

which is to be coloured is 2v . 2v can receive colour β as it is not

adjacent to 4v . Thus, atleast 4 colours are necessary to colour the

graph. Hence χ(G) = 4 .

Definition 9.13 :

A graph is called planar graph if it can be drawn in a plane so
that no two edges of graph cross.

The crossing is said to occur in a graph it two edges meet in a
point which is not a vertex.

The figure 9.6.5 shows an example of planar and non-planar
graph.

v v

v v

1 2

34

v v

v v

1 2

34

(a) Non-planar Graph (b) Planar Graph

Fig. 9.6.5
In Fig. 9.6.5(a) edges 2 4v v and 1 3v v cross each other. In Fig.

9.6.5(b) two edges wherever they meet they meet only at their end
points. The graphs (a) and (b) are isomorphic.

Theorem 14 : Every planar graph is 6-colourable.

Theorem 15 : (Heawood) Every planar graph is 5-colourable.

Theorem 16 : (four colour theorem) Every planar graph is 4-
colourable.

Note : The proof of theorem 4 was given by computer computations.
A computer free proof of this theorem is still to be found.
Appel and Haken have solved four colour theorem by using
computers.

Application of colouring of graph :

The colouring of graphs were used to solve map-colouring
problem. The colouring of map means to colour each region (or
country or state or province) so that no two distinct regions sharing a



177

common border have the same colour. The map-colouring problem
is to find the smallest number of colours used to colour the map.
Each region will be considered as vertex and an edge will be
common boundary shared by two regions. For example, consider
the map given in Fig. 7.10.6 and its graphical representation with
colouring.

UT CO

NE

AZ NM

KS

UT CO

NE

AZ

KS

NM

( )a

( )a
( )b

9( )

9( )

v( )

(a) Map G (b) Graph of map G

 χ G = 4

Fig. 9.6.6

Definition 9.14 :

Given an integer λ > 0 , we denote by GP (λ) as the number of

different λ - colourings of graph G. We call GP (λ) as chromatic

polynomial of G.
Example :

1) Consider simple trivial graph 1K . 1K is graph with one vertex.

We can colour 1K with any of given λ colour. Therefore,

K1
P (λ) = λ .

2) Consider graph 2K , a graph with two incident vertices u and v.

We can colour vertex u with λ colours but v will carry the colour
which is not given to u. So total colourings of v are ( λ - 1) –
colourings. Thus, total colourings of 2K given by

K2
P (λ) = λ(λ –1) .

3) In General, Kn
P (λ) = λ(λ –1) --------- (λ – n 1)+ .

4) Consider the line graph 4L as shown in Fig.9.6.7.

v v v v1 2 3 4

Fig. 9.6.7 Line graph 4L
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Suppose there are λ - colours. The first vertex can be coloured
by any λ colours. The second vertex adjacent to first can be
coloured by any (λ –1) - colours. 3rd vertex can be coloured by any

(λ –1) colours not used for second vertex. Similarly, the 4th vertex

can be coloured by any (λ –1) - colours. By multiplication principle

of counting, the total number of colourings is 3λ(λ –1) . Thus,

  3
L4

P λ = λ(λ –1) .

Theorem 9.17:

Let 1 2 KG ,G ,....,G be components of disconnected graph G.

Then G G G G1 2 K
P (λ) = P (λ).P (λ),...., P (λ) , where R.H.S. is product of

chromatic polynomials of each component.

Example:

Consider graph G in Fig.9.10.8. It has two components each of

which is 3K . The chromatic polynomial of 3K is   λ λ –1 λ – 2 .

    2 22
GP (λ) = λ λ –1 λ – 2

G

Fig. 9.6.8

As χ(G) = 3 , the number of distinct ways to colour G using 3

– colours is    2 22
GP (3) = 3 3 –1 3 – 2

= 2 29(2) (1)

= 9 4

= 36
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Check your progress

1) Construct a graph for the following maps.

P

Q

R

S

T

P

M R

S

T U

N
M

L

P

Q

R
O

E

I

G

K

L

B

2) Find the chromatic number for the following graphs.

3) Find the chromatic polynomial GP for the graphs given in

Exercise 2.

4) Determine whether the given graphs are planar? If so, draw it so
that no edges cross.

a) b) c)

d) e)

a) b)

a) b)

c)
d)
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5) Find GP and (G)X for the graph drawn in Exercise 1.

6) Give example of a connected graph on five vertices that is (a)
planar (b) not planar.

7) What is (G)X for a bipartite graph G? Justify.

8) Judge whether following is true or false.

i) The chromatic number of any cycle is 2.

ii) The chromatic number of bipartite graph is 2.

iii) For each integer p > 0 there is a graph which is p-colourable.

iv) The chromatic number of Petersen’s graph is 4.

v) Any two graphs with same chromatic number are isomorphic.

9.7 LET US SUM UP :

In unit 8, we have seen interesting graphs like Eulerian graphs
and Hamiltonian graphs. We have also leant simple methods to find
Eulerian circuit and Hamiltonian circuit. As colouring of graphs also
is a field where not much work is done, we have tried to learn basic
concepts of colouring a graphs.
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10

TREES

Unit Structure

10.0 Objectives

10.1 Introduction

10.2 Characterisation of Trees

10.3 Labeled Trees

10.4 Minimal Spanning Trees

10.5 Trees Searching

10.6 Directed and Undirected Trees

10.7 Unit End Exercises

10.8 Let us sum up

10.9 References for further reading

10.0 OBJECTIVES

After going through this chapter students will be able to
understand:

 Know about tree in graph theory, its properties and
characterisation

 Find minimal spanning trees
 Know about directed and undirected trees

10.1 INTRODUCTION :

One of the most important topic in study of Graph Theory is
Trees. Many applications rangeing from family tree to computer
science management tree is dealt with the study of trees.

The first use of trees by German Mathematician Karl Georg
Christian von Staudt was done in 1847 in his work on projective
Geometry and by German physicist Gustav Robert Kirchhoff in the
same year in his paper on electrical networks. The word tree for a
particular graph was first used by Arthur Cayley.



182

In this unit we are going to study trees and its properties first.
Then we study labeled trees; spanning trees, rooted and binary trees.
The wide range of application of trees in different field has created a
revolution in study of trees.

A graph of an undirected tree T will have a single line
without arrows. While the edge of directed tree will have arrows
showing the direction of edge.

10.2 CHARACTERISATION OF TREES :

To start with we have to first understand basic definitions
related to trees.

10.2.1 Definition : A connected graph which contains no circuits is
called a tree.

We can also frame a definition which uses set theory notation.
Let A be a set and T be relation on A then we say that T is a tree if
there is a vertex 0v in A with the property that there exists a unique

path in T from 0v to every other vertex in A but no path from 0v

to 0v .

Remark : Tree is a connected acyclic graph.

Some examples of trees is given in figure 10.2.1.

(a) (b) (c) (d)

Fig. 10.2.1

10.2.2 Properties of Trees

Let T be a graph on n vertices then –

1. There is one and only one path between every pair of vertices in
a tree.

2. T has n vertices and n – 1 edges.

3. T is connected and has n – 1 edges.
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4. T is connected and every edge is cut-edge.

5. T is minimally connected graph.

6. T has n-vertices, n – 1 edges and no circuits.

7. In a tree with n 2 , there are atleast two vertices of degree one.

10.2.3 Definition : A pendant vertex is defined as a vertex of degree
one.

Example : In the graph given below in Fig. 9.2.2 0v is the pendant

vertex. There are more than one, pendant vertex in any tree.

v0

Fig. 10.2.2

10.2.4 Definition : The initial vertex 0v considered when we start

drawing a tree is called root vertex. A tree in which there is root
vertex is called rooted tree. In rooted tree the root vertex is clearly
distinguished from remaining vertices. Denote tree T with root
vertex 0v as  0T, v . Examples of rooted trees are given in Fig.

10.2.3.

Fig. 10.2.3 Rooted trees

10.2.5 Definition : A binary tree is defined as a tree in which there
is exactly one vertex of degree two and each of remaining vertices
are of degree one or three.
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Examples of binary trees are given in Fig. 9.2.4.

Fig. 10.2.4 : Binary Trees

Note that every binary tree is a rooted tree.

10.2.6 Theorem 1 : Let T be a tree with root vertex 0v then,

a) There are no cycles in T.
b) 0v is the only root of T.

c) Each vertex in T, other than 0v has in-degree one and 0v

has in-degree zero.
10.2.7 Levels in a tree

Consider the trees given below in the figure 10.2.5. We start
with vertex 0v the root vertex. No edges enter 0v .

Level

vv v v8 9 10 11

v1
v2

v
3

v
4 v

6 v
7

v0

v5

v v

v
v

vvv

1 2

3
4

5 6 7

v0

(a) 1T (b) 2T

Fig. 10.2.5 : Levels in a tree

Several edges may leave 0v . These edges are drawn in

downward direction. The vertex 0v is said to be at level 0. The

edges starting at 0v will terminate into the vertices which will be

called as level 1 vertices. 0v is sometimes called parent of vertices

1

2

3

0
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in level 1 while vertices in level 1 are called the offspring of 0v .

The edges having a vertex at level 1 are drawn downwards. The
vertices at which the edges drawn from level 1 vertices terminates
are called vertices at level 2. The offspring of any one vertex are
sometimes called siblings. The largest level number of a tree is
called the height of the tree. The vertices of the tree that have no
offspring are called the leaves of the tree. All the vertices of tree
that can be reached by a path beginning at any vertex v are called
descendants of vertex v. If T is rooted tree with vertex 0v and v is

any vertex of T other than 0v then the tree with root vertex v is

called subtree of tree T beginning at v. Denote subtree of tree
(T, 0v ) as T(v).

In figure 10.2.5(a) 1T has vertex 0v at level 0. Level 1

vertices are 1 2 3v , v , v . Level 2 vertices are 4 5 6 7v , v , v , v . Level 3

vertices are 8 9 10 11v , v , v , v . The height of tree 1T is 3. The vertices

8 9 10 11v , v , v , v are leaves of tree 1T . The offsprings of 0v are

1 2 3v , v , v . The offspring of 2v are 5v and 6v . The vertices 5v and

6v are siblings of 2v . The descendants of 2v are 10v and 11v . The

subtree of 1T beginning at 2v is given in figure 10.2.6. The height

of subtree is 2.

v2

v5

v
10 v

11

v
6

Level

1

2

0

Fig. 10.2.6 : Subtree of 1T

Example : Draw a tree T with vertex set

1 2 3 4 5 6 7 8 9{v , v , v , v , v , v , v , v , v ,

10v } and edge set            2 3 2 1 4 5 4 6 5 8 6 7{ v , v , v , v , v , v , v , v , v , v , v , v ,

     4 2 7 9 7 10v , v , v , v , v , v } . Show that T is a tree and identify the

root. Draw one subtree of T. Write height of T.

Solution : T is a tree with root vertex 4v as there is path from 4v to

every vertex in tree T. There are no cycles. Height of tree T is 3.
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v v9 10

v1

v2 v
5

v
4

v
6

v
7

Level

1

2

0

3

v
8

v
3

(a) T

Subtree of T is

v7

v9
v10

v6

(b)
Fig. 10.2.7 Subtree of T

10.3 LABELED TREES

It is sometimes useful to abel the vertices of tree for a
particular purpose. The set of vertices of tree is not important but
emphasis is given on the label which is attached to vertices of tree.
Such a tree where labels are given to each vertex is called labeled
tree.
Some examples of labeled trees.

10.3.1 Label tree representing algebraic – expression.

Consider the algebraic expression.

       4 ÷ 3× x + 2 x + 5 + x        –
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The labeled tree for this expression is shown in Fig. 10.3.1.

+

+

+

-4

3 2 5

¸

x x x

x

Fig. 10.3.1 : Labeled tree for algebraic expression

While drawing such tree, we try to find the central operator.
The central operator is the operation which is inbetween two
numbers or expressions. As shown in the example. ‘+’ is central

operator of expression   4 ÷ 3× x and     2 – 5 ++x x . ‘  ’ is

central operator of number 4 and expression  3 x while ‘+’ is

central operator of expression  2 – x and  5 + x . Similarly, ‘-’ is

central operator of 2 and x ; ‘+’ is central operator of 5 and x ; ‘x’ is
central operator of 3 and x . Each vertex has only one label either a
operation sign or the number.

10.3.2 Positional tree : It is a type of labeled tree. The vertices are
labeled so as to show the position of offspring. While drawing a
positional tree we have to imagine that the n – offspring positions for
each vertex are arranged symmetrically below the vertex and we
place in its appropriate position each offspring that actually occurs.

We do not label the root vertex in these trees as root vertex is
not a offspring. Suppose we choose three offspring positions then
each vertex will have offsprings placed at these 3 – positions only.
If any offspring is not present then that position will not be shown.
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1 2 3

1 2 3
3

1 2 3 1 2 3 2 3

Fig. 10.3.2 A positional 3 - tree

As shown in figure 10.3.2 the first offspring – 1 from any
vertex v if it exists is edge drawn from v sloping to its left. The
offspring – 2 from vertex v if it exists is drawn vertically downward
from v while offspring – 3 from vertex v if it exists, is drawn to the
right of vertex v dropping downloads.

10.3.3 Labeled graph : A graph in which every vertex is assigned a
unique name or label (no two vertices have the same label) is called
a labeled graph.

Whenever we are counting the total number of distinct
labeled graphs on certain number of vertices the two differently
labeled graphs are counted separately even though they are
isomorphic. Note that the number of distinct labeled trees with n

vertices  n 2 is n–2n . For example, consider labeling of trees on

4 – vertices. There are 16 trees on 4 – vertices that carry distinct
labels. Some of these labeled trees on 4 – vertices are shown in Fig.
9.3.3.

A B

C
D

A B

CD

A B

CD

A B

CD

Fig. 10.3.3 : Labeled trees

The trees in figure 10.3.3 are isomorphic but are different
labeled trees.
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9.4 MINIMAL SPANNING TREES :

Here we see how are can associate tree to a connected graph.

Definition 10.4.1 : Let G be a connected graph then a spanning tree
T of G is a subgraph of G which is a tree and which contains all the
vertices of G.

Example : Consider graph G and its spanning tree in figure
10.4.1(a) and 10.4.1(b) respectively.

v

v v

v

v
v

v v

1

2
3

4

5

6

7

8

v
1

v
2 3

v

v4

v
5

v7

v
8

v
6

Fig. 10.4.1 : Spanning tree

We remove the edges of a graph G which forms cycle and get
a tree.

Definition 10.4.2 : A minimal spanning tree in a connected
weighted graph is a spanning tree that has the smallest possible sum
of weight of its edges.

There are two algorithm for constructing minimal spanning
trees. Both proceed by successively adding edges of smallest
weights, from those edges with a specified property that have not
already been used.

a)

b)
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10.4.3 Prim’s algorithm : Let G be a graph with n-vertices.

Step 1 Choose a vertex 1v of G. Let  1V = v and  E =

Step 2 Choose a nearest neighbour iv of V that is adjacent to

j jv , v V and for which the edge  i jv , v does not form a cycle

with members of E. Add jv to v and edge i jv v to E.

Step 3 Repeat step - 2 until |E| = n – 1 , Then v contains all n
vertices of G and E contains all the edges of minimal spanning
tree T.

Example : The small town of social circle maintains a system of
walking trails between the recreational areas in town. The system
for the same is shown in Fig. 10.4.2. The system is a weighted
graph. The weights represent the distances in kilometers between
sites.

v
1

v2

3
v

v4

v
5

v
7

v

v
6

3

2

2

2

6

4

4
5

5

3

3
0

Fig. 10.4.2

Using Prim’s algorithm we begin with vertex 0v . The nearest

neighbour to 0v is 2v who is 2 – km away from 0v . So we select

edge 0v 2v first. Fig. 9.4.2(a). Consider set { 0v , 2v }. The vertex

1v is the nearest neighbour. We can either choose 0v 1v or 2v 1v as

next edge. Let us choose 2v 1v . Then vertex set will be { 0v , 2v , 1v }

and edges set will be { 0v 2v , 2v 1v }. Fig. 9.4.2(b). Here we cannot

choose edge 0v 1v as it will make a cycle so next vertex we choose

is 5v and edge 2v 5v to get { 0v , 2v , 1v , 5v } and edge set

{ 0v , 2v , 2v 1v , 2v 5v }. Continue in this manner and finally get

minimal spanning tree shown Fig. 10.4.2.
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Fig. 10.4.2: Minimal spanning tree using Prim’s algorithm

Thus total weight of the spanning tree which is minimal is
2 + 3 + 5 + 4 + 2 + 3 + 2 = 21. Thus, the bicycle path of minimum
length for the system is of 21 km.

Note that for the same graph shown in Fig. 10.4.2. We can
find minimal spanning tree using Prim’s algorithm beginning with
vertex 4v . Here also bicycle path is 21 km, long as seen in Fig.

10.4.3.
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v
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2

Fig. 10.4.3 Minimal Spanning Tree

10.4.4 Kruskal’s algorithm : Let G be a connected graph with n
vertices and let S = { 1 2 ke ,e ,....., e } be set of weighted edges of G.

Step 1 Choose edge 1e in S of least weight. Let E = { 1e }. Replace S

with S–{ ie }.

Step 2 Select edge ie in S of least weight that will not make a cycle

with edges of E. Replace E with  iE e and S with S–{ ie }.

Step 3 Repeat step - 2 until |E| = n – 1.

Since G has n vertices, the n – 1 edges in E will give spanning
tree T.

(a)
(b) (c)

(d)
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Example : Consider the graph given in Fig. 10.4.3.

v
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v
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12

Fig. 10.4.3

Initially choose edges with minimum weight. In Fig. 10.4.3,
they are edges 1v 2v and 5v 4v . Both of these are selected. Fig.

10.4.4 (a) Next there are three edges of weight 12. All these edges
can be added without creating a cycle. Fig. 10.4.4 (b) Edge of weight
14 is remaining edge of least weight. Adding this edge given us six
edges for 7 – vertex graph, so a minimal spanning tree is found as
shown in Fig. 10.4.4 (c).
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(c)

Fig. 10.4.4 Minimum spanning tree by Kruskal’s algorithm
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10.4.5 Application of minimal spanning tree

Suppose that n cities 1 2 nv , v ,...., v are to be connected through

a network of roads. The cost ijC of building a direct road between iv

and jv is given. Then the problem is to find the least expensive

network that connects all n cities together. Thus the problem of
connecting n – cities with a least expensive network is a problem of
finding a shortest spanning tree in a connected weighted graph of n
vertices.

10.5 TREES SEARCHING :

Sometimes it is necessary to consider each vertex of a tree T
exactly once in some specific order. When we reach a particular
vertex and wish to perform computation at that vertex then that
application is represented by the tree. By visiting a vertex, we mean
performing particular task at that vertex.

The process of visiting each vertex of a tree in some specific
order is called searching the tree or tree search.

In this topic we will consider searches on binary positional
trees. We know that in a binary positional tree, each vertex has two
offsprings. Denote these offspring as Lv and Rv where Lv denotes

left offspring and Rv denotes right offspring. If a binary tree is not

positional then it can be labeled in such a way that it becomes
positional.

10.5.1 Definition : Let T be positional binary tree with root vertex v
then if Lv exists then the subtree LT(v ) will be called the left subtree

of T and if Rv exists then the subtree T( Rv ) is called right subtree of

T. See Fig. 10.5.1.
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V

L

R
V

V

(a)
Positional binary tree T

L
V

V
R

(b) (c)
Left subtree  LT v Right subtree  RT v

Fig. 10.5.1 Subtree
Note : 1)  LT v if it exists is a positional binary tree with root Lv

2)  RT v if it exists is a positional binary tree with root Rv

10.5.2 Methods of tree searching

There are three methods of searching. They are :
1) Preorder Search
2) Inorder Search
3) Postorder Search

We will discuss these three methods of tree searching in
detail.
10.5.2.1 Preorder Search

Preorder search of a tree consists of following three steps :

1) Visit the root

2) Search the left subtree if it exists

3) Search the right subtree if it exists
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Exercise : Use preorder search and find all subtrees of given tree t in
Fig. 10.5.2(a).

a

b

c

d

e

f
j

ki

g
h

(a) Tree T for preorder search

f

10
j

9

k

7

6

b

c

5
i

g

3

1

4 h

d

e

2 8

a

(b) Subtrees of T after preorder search

Fig. 10.5.2 a b c g h i d k e j f

Procedure : According to preorder search applied to T, first the root
is visited and ‘a’ will be printed. Then the left subtree starting at ‘b’
will be considered. The boxes represents the subtrees in the order of
their search. The next vertex that will be printed will be ‘b’. At ‘b’
the left subtree begin at ‘c’. Thus, next printed vertex will be ‘c’.
After ‘c’ comes ‘g’ and ‘h’. All the subtrees towards left of vertex
‘a’ are searched. Now, we proceed to right subtrees of vertex ‘a’.
The order in which search gives the vertex are ‘d’ then ‘k’ then ‘e’
then ‘j’ then ‘f’. Thus, the preorder search gives us tree T as “a b c g
h i d k e j f”.
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10.5.2.1(a) : Polish form or prefix of algebraic expression

Consider the parenthesized expression

    p + q × r – s ÷ d  

Fig. 10.5.3(a) shows the labeled positional binary tree
representation of this expression.

p
q

r

s
d

+

x

-

¸

Fig. 10.5.3(a) Labeled positional binary tree

We can apply preorder search to this tree as shown in Fig.
10.5.3(b).

¸

7

6

5

3

1

d2

8

p q

r

+

x

-

4

s

Fig. 10.5.3(b) Tree “x + pq – r  sd”

The preorder search gives the string “x + pq – r  sd”. This
is polish form of the given expression ((p + q)  (r – (s d)). The
boxes shows the order of getting the subtrees.
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10.5.2.2 Inorder Search
Inorder search of tree consists of following steps.

1) Search left subtree   L LT v , v if it exists

2) Visit the root, v.

3) Search the right subtree   R RT v , v if it exists.

Exercises : Use inorder search and find all the subtree of tree T
given in Fig. 10.5.2(a).

f10j 9

k

7

6

b

c

5i

g

31

4

h

d

e

2 8

a

Fig. 10.5.4 Inorder search

First, search subtree 1 in Fig. 10.5.2(a). This requires us to
search subtree 2 and this in turn requires us to search subtree 3. As
before, a search of tree simply prints the label of the vertex.

Thus, symbol ‘g’ is printed first. The root of g is ‘c’, so next
printed vertex is ‘c’. Right of ‘c’ is ‘h’, so next vertex is ‘h’ which is
printed. Now, the next subtree begins at ‘b’, and right of it is ‘i’.
The vertex which will be printed after ‘c’ will be ‘b’ and ‘i’. The
left subtree of ‘a’ is complete. Start with the innermost vertex of
right subtree. Subtree in box 6, gives vertex ‘k’, then comes root ‘d’
and then vertex ‘f’. Now vertex ‘f’ is to right of root ‘e’. Finally the
inorder search will give the tree with following order of vertices, “g
c h b i a k d j e f”.

10.5.2.2(a) Infix notation for algebraic expression

The labeled positional binary tree given in Fig. 10.5.3(a) is

considered for the expression     p q r s d + – . When inorder

search is applied to this tree we get the string.
“ p q r s d + – ”

This is infix notation for algebraic expression.
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10.5.2.3 Postorder Search

Postorder search of tree consists of following steps :

1) Search for left subtree   L LT v , v if it exists.

2) Search for right subtree   R RT v , v if it exists.

3) Visit the root v.

Exercise : Use postorder search and find all the subtree of tree T
given in Fig. 10.5.2(a).
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e
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Fig. 10.5.5 Postorder Search

When we begin the search we see that subtree 3 and subtree 4
must be searched, before vertex ‘c’ is printed, if Fig. 10.5.2(b) is
considered for post – order search.

Thus the order in which the vertices will be considered in the
postorder search can be given by : “g h c i b k j f e d a”.

10.5.2.3(a) Reverse polish form or postfix for algebraic
expression

When postorder search is applied to tree of the expression

    p q r s d + – we get the string “ pq rsd x+ – ”

This is the postfix or Reverse Polish form of the algebraic
expreesion.

Note that in a preorder search the order is root, left and right.
For the inorder search the order is left, root, right while in postorder
search the order is left, right, root.
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10.6 DIRECTED AND UNDIRECTED TREES :

The trees with directed edges are of great importance in many
applications such as electrical network analysis, game theory, theory
of languages, computer programming and counting problems. One
of the rooted tree with directed edges is called arborescence.

An undirected tree is simply a tree when all the edges are
made bidirectional. We donot use arrows for the edges in undirected
tree. Some examples of undirected trees is shown in Fig. 9.6.1.

(a) (b) (c)

Fig. 10.6.1 Undirected trees

Note that if T is an undirected tree then it is connected and
acyclic. The converse also holds. Thus any connected and cyclic
graph is a undirected tree. Some more properties of directed and
undirected trees are discussed in section 10.2.

9.7 EXERCISES :

1) Draw a tree with vertex set V and edge set E. Also find root if
exists.
a) V = {a, b, c, d, e, f}; E = {(a, b), (c, e), (f, a), (f, c), (f, d)}
b) V = {1, 2, 3, 4, 5, 6}; E = {(1, 2), (1, 3), (4, 5), (4, 6)}

2) List all the level – 3 vertices and all the leaves of Fig. 10.2.5(a)
and 10.2.5(b).

3) Consider following Fig. 10.7.1.
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Fig. 10.7.1 0T(v )
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a) Find siblings of 8v .

b) Find descendants of 8v .

c) Compute tree 2T(v ) and 3T(v ) .

d) What is height of 0T(v ) and 3T(v ) ?.

e) List all level – 4 vertices if exists.
f) List all leaves.

4) Construct tree for algebraic expression
a) 17 + (6 – 2) – ( x – ( y – 4))
b) 3 – ( x + (6  4  (2 – 3)))
c) ( x y)  (( x  3) – (z  4))

5) Make a ‘family’ tree that shows the descendants of one of your
great grandfather.

6) How many distinct positional 3 – trees are there with height 2?
Draw them.

7) Use Prim’s algorithm to find minimal spanning tree for following
graphs and beginning at vertex given.
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2.9 2.2
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3.31.8
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, at vertex Fa)

, at vertex G
b)
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8) Use Krushkal’s algorithm to find minimal spanning tree for the
graphs given in Exercise 7.

9) Refer following tree and answer.
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v
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v
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10

v
5

2
v

4
v

a) What is height of the tree?
b) List the leaves of T.
c) How many subtrees of T condition 4v ?

d) List the siblings of 7v .

10)For the graphs given below perform
i) Preorder search
ii) Inorder search
iii) Post order search and write the result of your search.
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(a) (b)

, at vertex E.
c)
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10.8 LET US SUM UP

In this chapter, we have learnt the structure of trees and its
properties we have also seen different ways of searching trees in a
graph. One can also find the spanning tree using the Prim’s and
Kruskal’s algorithm. The trees are very useful models for different
situations in computer science.
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11

SEMI-GROUPS AND GROUPS

Unit Structure :

11.0 Objectives

11.1 Introduction

11.2 Binary Operations

11.3 Semi Groups

11.4 Products and quotients of semi-group

11.5 Groups

11.6 Products and quotients of groups

11.7 Let us sum up

11.8 Unit end exercise

11.9 References for further reading

11.0 OBJECTIVES

After going through this chapter students will be able to:

 about binary operations

 Algebraic structures like semi-groups and groups will be
known

 Operations like product and quotient of these algebraic
structure will be known

11.1 INTRODUCTION
Semi-groups and groups are mathematical structures. Semi-

groups help in the study of finite state machines. While studying
group structure we develop an understanding for coding theory. To
study groups and semi-groups some knowledge of set theory and
number system is required.

In this chapter we are going to discuss following topics.
 What are binary operations?
 The structure called semi-group, their products and quotients.
 The group structure and its product and quotient.
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11.2 BINARY OPERATION

Binary operation is basic tool to study discrete mathematics.
A collection of objects with operations defined on them and the
properties associated with the operation together gives us a system
which we call mathematical structure or system. An operation that
combines two objects is a binary operation. Binary operation is a
function with certain properties. A set with binary operation is a set
in which an abstract product is defined such that the product of two
elements of the set is again an element of the set.

11.2.1 Definition 1: A binary operation on set G is defined as a
function f : G  G  G. If a and b  G then f(a, b) .G

Remark : A binary operation is a rule which assigns to each ordered
pair of element of G, a unique element of G.

Notation : We use the symbol *a b to denote f (a, b).

11.2.2 Examples of binary operation :

1. Let G =  = The set of integers.
Define * : G  G  G as a b = a + b
Since a + b = G, * is binary operation on  .

2. Let G =  = set of real numbers.
Define * :     as a b = a  b

Then * is not binary operation, since it is not defined for every
pair of elements of  . For example; 3 and 0 but 3 0 is
not defined.

3. Let G = + = set of positive integers, where * is defined as
a b = a – b.

* is not binary operation since it is not defined for every pair of

elements of + . For example; 2+ , 3+ but 2 – 3 = –1 + .

4. Let G =  , be set of integers
Define * : G  G  G as a b = a + b – ab

Then * is binary operation. Note that if G = + = set of positive

integers then * defined above will not be binary operation as 2+ ,

3+ but 2 * 3 = 2 + 3 – 2.3 = 2 + 3 – 6 = 1 +– .

5. Let M be set of all n n Boolean matrices.
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A Boolean matrix is n n matrix whose entries are zero or
one. Let A = [aij] and B = [bij] be n n Boolean matrices.
Define A B , the join of A and B, by C = [cij] where

1 if = 1 or = 1
=

0 if and both are 0

ij ij
ij

ij ij

a b
c

a b


 



Define A B , the meet of A and B by D = [dij] where
1 if and are both 1

=
0 if = 0 or = 0

ij ij
ij

ij ij

a b
d

a b


 



Let M be set of Boolean matrices. Let G = M. Define * on M as
follows : For A, B  M; A * B = A B . The * is a binary operation.
If * is defined as A * B = A B then, again * is binary operation.

11.2.3 Properties of binary operation :

1. Definition 2: A binary operation on a set G is said to be closed if
a * b  G for all elements a and b in G. We say * satisfies closure
property.

Note : Whenever * is binary operation, it always hold closure
property and we say G is closed with respect to *.

2. Definition 3: A binary operation on set G is said to be
commutative if a * b = b * a for all a, b  G. We say * satisfies
commutative property.

3. Definition 4: A binary operation * on a set G is said to be
associative if a * (b * c) = (a * b) * c for all a, b, c  G. We say *

satisfies associative property.

4. Definition 5: A binary operation * on a set G is said to be
idempotent if a * a = a for all a G . We say * satisfies idempotent
property.

To summaries properties of binary operation we have
following table where * is binary operation on a set G and * satisfies
properties for a, b, c  G.

1. a * b  G
2. a * a = a
3. a * b = b * a
4. a * (b * c) = (a * b) * c

Closure Property
Idempotent Property
Commutative Property
Associative Property

Table No. 11.1
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Examples based on definition 2 to 5.

1. Let G =  and a * b = a + b,  a, b   , Then * satisfies closure
property as a * b = a + b   .

* satisfies commutative property because a * b = a + b while b

* a = b + a and a * b = a + b = b + a = b * a.

Also, (a * b) * c = (a + b) * c
= (a + b) + c
= a + (b + c)  is associative in     

= a + (b * c)
= a * (b * c)

 * holds associative property. Now, 2 * 2 = 2 + 2 = 4  2, hence *
does not satisfy idempotent property.

2. Let L be a lattice. Define a * b = a b (greatest lower bound of
a and b) Then * satisfies all four properties.

a * b = a  b  L,  * holds closure property

a * a = a  a = a,  * holds idempotent property

a * b = a  b = b  a = b * a  * holds commutative property

(a * b) * c = (a  b)  c
= a  (b  c)

= a * (b * c),  * holds associative property

3. Let G and * be defined as, * 2a b ab b   

Then a * b  , hence * holds closure property.
a * a = a.a + 2a = a (a + 2) ≠ a, hence * does not hold idempotent
property.

a * b = ab + 2b and
b * a = ba + 2a
Since a * b ≠ b * a, * is not commutative on  .

(a * b) * c
= (ab + 2b) * c
= (ab + 2b) . c + 2c
= abc + 2bc + 2c and

a * (b * c)
= a * (bc + 2c)
= a (bc + 2c) + 2 (bc + 2c)
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= abc + 2ac + 2bc + 4c
Thus, (a * b) * c ≠ a * (b * c) and hence * is not associative on  .

4. Consider the set G = {a, b, c, d} with binary operation * defined
by following table.

* a b c d

a a c b d

b d a b c

c c d a a

d d b a c

i) c * d = a and d * c = a
Thus, c * d = d * c
ii) b * d = c and d * b = b
Thus, b * d ≠ d * b
iii) a * (b * c) = a * b

= c
(a * b) * c = c * c = a
 a * (b * c) ≠ (a * b) * c
From (ii), * is not commutative.
and from (iii), * is not associative.

Check your progress

1. Determine whether * is binary operation. If it is determine
whether * is closed, idempotent, commutative and associate on
given set.
a) On  where a * b = 2a + b

b) On + where a * b = a / b
c) On  where a * b = a – b
d) On lattice L where a * b = a  b

(least upper bound of a and b)
2. Consider binary operation * defined on set G = {a, b, c} given by

following table.

* a b c

a b c b

b a b c

c c a b

a) Is * commutative?
b) Compute a * (b * c) and (a * b) * c
c) Is * associative?
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11.3 SEMI-GROUPS

Definition 6 : Algebraic Structure
A nonempty set G with one or more binary operations is called

an algebraic structure.

If * is binary operation on G then (G, *) is an algebraic structure.

Examples of algebraic structure

1. The set  : set of natural numbers is algebraic structure with
respect to binary operation +. Thus we denote ( , +) is an
algebraic structure.

2. ( , +) : set of integers with binary operation + is an algebraic
structure.

3. ( , + ,  ) : set of real numbers with binary operations + and  ,
is an algebraic structure.

Definition 7: Semi-group :
An algebraic structure (G, *) is called a semi-group if the binary
operation * is associative in G. Thus, if a, b, c  G, then (a * b) * c =
a * (b * c).

Definition 8: Commutative Semi-group :
The semi-group (G, *) is said to be commutative if * is commutative.

Examples of Semi-group :
1. ( , +) : Set of natural numbers with respect to binary operation
+ is semi group as + satisfies associative property i.e.  a, b, c 

 , (a + b) + c = a + (b + c)

2. ( , +) : set of integers with binary operation + is commutative
semi-group because + is associative and commutative in  .

Definition 9: Identity element:
An element e in a semi group (G, *) is called the identity element if
e * a = a * e = a  a  G. (read  as ‘for all’)

Note that identity element is unique. Otherwise if it is not unique
then there exist another identity element i such that i * a = a * i = a.

Thus if a = e then; i * e = e * i = e (1)
Also, if a = i then; e * i = i * e = i (2)
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From (1) and (2) we get e = i. Thus, identity element if it exists is
unique.

Definition 10: Monoid
A monoid is a semigroup (G, *) that has an identity element.

Examples of Monoid

1. ( , +) : Set of integers with binary operation + is monoid. Here;
0 is identity element as 0 + a = a + 0 = a  a   .

2. Let S be fixed non empty set and let sS be set of all functions

f : S  S. If f and g are elements of sS , define f * g = f  g, the

composite function. Then ( sS , *) is a semigroup which is not

commutative and is a monoid since sS has identity element s1 , i.e.

s
* *s sf S ; 1 f f 1 f  = =

Definition 11: Sub semi-group
Let (G, *) be a semi-group. Let H be subset of G. If H is

closed under binary operation * then (H, *) is called sub-semi-group
of (G, *)

Definition 12: Sub monoid
Let (G, *) be a monoid with identity element e. If H be nonempty

subset of G. If H is closed under binary operation * and e  H, then
(H, *) is called submonoid.

Note : 1) Subsemigroup of a semigroup is itself a semigroup.
2) Submonoid of a monoid is itself a monoid.

Examples of submonoid

1. If (G, *) is a semigroup, then (G, *) is subsemigroup of (G, *).
Similarly if (G, *) is a monoid then (G, *) is submonoid of (G, *). If
T = {e} then (T, *) is also a submonoid of monoid (G,*).
2. Let H be set of all even integers then (H, X) is a sub semigroup
of ( , X) where ‘x’ is binary operation multiplication. But (H, X) is
not a submonoid of ( , X) because 1 is identity element of  which
does not belong to H.

Group Theory
A group is formally defined as below. We denote the binary
operation as “0” or “*” until or otherwise specified.
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Definition: Let G be a non-empty set and 0 be a binary operation on
G. We say that (G, 0) is a group if the following four properties are
satisfied.

1. G. is closed with respect to ‘*’ i.e .,for all a , b in G the element a
* b is a uniquely defined element of G

2. G. is associative with respect to ‘*’
i.e., for all a , b , c in G a * (b*c) = (a*b) *c

3. Identity element exists in G for ‘*’
i.e., if there exists ‘e’ such that a * e = e * a = a  a in G.

4. Inverse exists for each element in G with respect to ‘0’
i.e., for each a in G there exists an element a -1 in G such that

1 1* *a a a a e     (where e is identity element of G)

Example 1: Set of all non-zero rational numbers from a group under
ordinary multiplication.

Solution: Let Q* is the set of all non-zero rational numbers.

Closure law: Let a , b ϵ Q*
a . b also belongs to Q* (Product of two rational numbers is a ational
number)

Q* is closed with respect to multiplication.
Q* satisfies fist condition of a group

Associative law: Let , , *a b c Q let ,
u v

a b
x y

  and
3

w
c 

Consider  
 
 

 
 

; . .
uv w u vw wu v uv uv w

a b a b c
x y xy xy z xy z x yz

            

( (uv)w = u(vw) and (xy)z = x(yz) where u,v,w,x,y,z ϵ Z and
satisfies associative law)

 .

u v w

x y z

a b c

       



From the above example it is clear that (a . b) . c = a .(b.c) and it si
true ᵿa , b , cϵQ*

Q* is associative with respect to multiplication.

Existence of Identity: since 1 is a rationa1 number 1 ϵQ*
Let a ϵQ*
We have a.1 = a = 1.a
So 1 is the identity element of Q* which exists in Q*
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Existence of Inverse: To prove existence of inverse, let
p

a
q

 be an

element Q* There exists *
q

Q
p
 such that 1

p q

q p
 

That shows
q

p
is the inverse of

p

q
and it is true for all a ϵQ*

Hence inverse exists for such element of Q* and inverse of a
denoted by 1/a or a-1.

Q* satisfies all four properties of a group, Q* is a group under
multiplication (Q*, .) is a group

Properties of a Group :

Abelian Group: In addition to the above mentioned four properties
of a group if it also satisfies another property called commutative
property , i.e.,a*b = b*a  a , b ϵ G

The group is calles either Abelian group or commutative group. A
group which is not abelian is calles as non-abelian group

Example 3: C = { a + ib / a,b ϵR} C is an abelian group with two
addition.

Addition is defined on C as (a1 + i b1) + (a2 + i b2) = (a1 + a2)
+ (b1 + b2)

Commutative Property
Let x , y ϵC where x = a1 + i b1 and y = a2 + i b2 , a1 , a2 , b1 , b2ϵR

X + y = (a1 + i b1) + (a2 + i b2)
= (a1 + a2) + i(b1 + b2)

Since addition two real number satisfies the commutative law.

a1 + a2 = a2+a1 and b1+b2=b2+b1

= (a2 + a1) + i(b2 + b1)
= (a2 + i b2) + (a1 + i b1)
= y + z

C satisfies the commutative law with respect to addition.
(C , +) is an abelian group or (C , +) is a commutative group.
Set of complex number also forms an abelian group with respect to
multiplication.
(Leftas an exercise)
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Commutative Law :  , * *
5 5

ab ba
a b Q a b b A ab ba       

Hance Q+ is an abelian group with respect to *.

Example 4: G = {1, -1} is an abelian group under multiplication.

. 1 -1
1 1 -1

-1 -1 1

From the above table, it is clear that (G , .) satisfies both closure,
associative property ,and abelian property with 1 being identity and -
1 is its own inverse

Addition modulo “m”

We shall now define a new type of addition called “addition
modulo “and is denoted by a+

m b where a and b are integers and ‘m’
is a fixed positive integers.

By definition , a+
m b = r 0 ≤ r < m where r is the least non-negative

remainder when a + b is devided by m and we read itas a addition
modulo m b.

Example 5: If a = 7; b = 8 then add 7 and 8 gives 15 divide by 2
the remainder is 1.

7+2 8=1

If a = 5 and b = 6 add 5 and 6 gives 11 divide by 3 we get the
remainder is 2.

5+3 6=2
Note: If a and b are two integers such that a-b divisible by fixed
positive integer ‘m’ we write a = b (mod m) and we read it as “a is
congruent to b modulo m”
Note: It can be easily seen that a+

m b = b+
m c (take any example and

try it in your own)

Example 6: prove that the set G = { 0, 1, 2, 3, 4, 5} is a finite
abelian group of group of order ‘6’ with respect to addition
modulo ‘6’.
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From the composition table as shown below

6 0 1 2 3 4 5

0 60 0 0   60 1 1   60 2 2   60 3 3   60 4 4   60 5 5  

1 61 0 1    61 1 2    61 2 3    61 3 4    61 4 5    61 5 0   

2 62 0 2   62 1 3   62 2 4   62 3 5   62 4 0   62 5 1  

3 63 0 3   63 1 4   63 2 5   63 3 0   63 4 1   63 5 2  

4 64 0 4   64 1 5   64 2 0   64 3 1   64 4 2   64 5 3  

5 65 0 5   65 1 0   65 2 1   65 3 2   65 4 3   65 5 4  

From the above table we see that all entries in the composite table
are the element of G.

That shows G is closed under addition modulo 6.(“+6”.)
To prove G is associative, let a = 2 b = 4 c=1
Consider 2+6 (4+6 1) = 2+65 = 1

(2+6 4) +6 1= 0+61 = 1
2+6 (4+6 1) = (2+6 4) +6 1 and it is true  a , b , c ϵG

G is associative under addition modulo 6 (‘+6”.)

Existence of identity : let a ϵ G a +6 0 = 0+6 a = a  a ϵG.
0 is the identity element in G.

Existence of inverse: from the above table,
0+60=0
1+65=0
2+64=0
3+63=0
4+62=0
5+61=0

Inverse of 0 is 0 , inverse of 1 is 5 , inverse of 2 is 4 , inverse

of 3 is 3 , inverse of 4 is 2 , inverse of 5 is 1 inverse exists for
each element of G and belongs to G

G is a group with respect to the binary operation +6.
Commutative Law : a +6 b = b +6 a a, b ϵ G.

If a = 2 b = 4 2+6 4 = 0 = 4+6 2.
(G, +6) is an abelian group)

Note: The set of first m non-negative forms an abelian hroup with
respect to addition modulo ‘m’
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Finite and identity Group: If the set G contains a finite number of
element then the group then the group (G, *) is called a finite group.
Otherwise the group (G, *) is called as Infinite group

Order of a group: Another natural characteristic of a group G is the
number of element it contains. We call it as order of a group and is
denoted by O(G).

Example 10: Let G = {1, -1} is a group
Then O(G) = 2.

If G is a group containing the set of all integers or set of all natural
numbers, then O(G) is infinite.

Order of an element of a group: If G is a group and a ϵ G. The
order of a is the least positive integer m such that am = e.

So, to find the order of a group element compute a,a2,a3,.. until you
reach the identity for the first time. See the following example.

In the group { 1 , -1 , I , -i} 1 is identity element i1 =I , i2 = -1 , i3 = -I
, i4 = 1 , i5 =I , i6 = -1 , i7 = -I , i8 = 1. Identity appeared twice at i4 and
i8 , but o (i) = 4 ( it is the least)

If such integer does not exists we say that the order of a is infinity.
We use the notation O (a) for the order of a.

Co-prime

Two number are said to be co prime if they do not have any common
factory except ‘1’. If a are co primes then there exists two integers x
, y such that xa + by = 1.

Example:-7.
On a group G, O (a) = 18, State that the orders of a6, a15, a-7.

Solution:-  O a n 

 
 ,

k n
O a

n k


1) O (a) = 18

 
 

6 18 18

18,6 6
O a   
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2) O (a) = 18

 
 

15 18 18

18,15 2
O a   

3) O (a) = 18

 
 

7 18

18,7
O a 

Now  7O a

   7 7O a O a  O (a-7) = O (a7) (the order of element of group is

same as its inverse )

 
 

7 18
18

18,7
O a   .

Example 11: Find the order of such element of the group G = {1, 2,
4, 7, 8, 11, 13, 14} the composition being multiplication modulo 15.

Solution: Identity element of G = 1:O (1) =1
To Find the order of 2,2x152x152 = 4x152=8

2x152x152 = 4x152=8
2x152x152x152 = 8x152=1(identity)

Hence O(2) = 4
To Find the order of 4,4x154 =1(identity)
Hence O(4) = 2
To Find the order of 7,7x157 = 4

7x157x157 = 13
7x157x157x157 = 13x157 = 1(identity)

Similarly, we can compute the order of 8,11,13,14.

Sub Group :

Sub Group: In general we are not interested in a subset of a group
G. but certain subset of elements in a group is itself a group. This
situation arises so often that we introduce a special name to describe
it, called sub group. See the following definition for a subgroup.

Definition: A non-empty subset H of a group G is said to be a
subgroup of G if H itself is a group, with respect to the same binary
operation defined on G.

Every subgroup of G is a complex of G every complex is not always
a subgroup.
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Example 12: Q*under multiplication is a proper subgroup of R*
under multiplication.

Example 13: Additive group of even integer is a subgroup of the
additive group of all integers.

Two-Step Subgroup Test:

Theorem: A non-empty subset of H of a group G is a subgroup of G
if and only if

i. a,b ϵH implies ab ϵH
ii. a ϵH implies that a-1 ϵ H

Theorem: A non-empty subset of H of a group G is a subgroup of G

if and only if a , b ϵH ab-1 ϵH.

One-Step Subgroup Test

Example 14 : See the example to under stand one-step subgroup
Test.

G be the group of non-zero complex numbers under
multiplication.

H = {a+ib/a2+b2 = 1,aϵR bϵR} is a sub group of G.

Let x , y ϵH where x = a + ib and y = c + id

Inverse of
2 2

1 C id
y

C id C d


 

 

we have xy-1 = (a + ib)
2 2

C id

C d




= ac+bd +i(bc-ad)/c2 + d2

real part of 1
2 2

ac id
xy

C d

 




imaginary part of 1
2 2

bc ad
xy

C d

 




consider
2 2 2 2

2 2

ac bd bc ad

C d C d

               

 

  
 

2 2 2 2 2 2 2 2

2 2

2 2 2 2

2 2

2 2

1.1
1

1

a c b d abcd b c a d abcd

c d

a b c d

c d

    




 
  



Xy-1 ϵH , hence H is a subgroup of G.
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Example 15: Let Z be the group of all integers

Let H1 = {…..-6,-4,-2, 0, 2, 4, 6…}
H2 = {…..-12,-9,-6,-3, 0, 3, 6, 9, 12…} be two subgroups of Z.

H1 H2 = { -12, -9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9,…}
Since -2 ϵ H1 H2 , -3 ϵ H1 H2 but -2 + -3 H1 H2

H1 H2 , is not closed under ‘+’.
H1 H2 , is not subgroup of (Z, + ).

Example 16 : G = {1, -1} is a group
H = {-1} is a subset of G.
H-1 = {-1}
H = H-1 but H is not a group since identity does not exists.

H is not a subgroup of G.

Check your progress

1. Show that AB is a sub-group of G if and only if AB = BA.

2. When does the semi-group form a group?

3. Prove that the set {0, 1, 2, 3, 4, 5} is a finite abelian group of
order 6 with respect to addition modulo 6.

4. Show that the set { 2 : , }G a b a b Q   is a group with respect to

addition.

11.7 LET US SUM UP

In this chapter we have learnt the details of algebraic
structures semi-group and groups. The examples of semi-group and
group are varying because of the properties related to the structure.
The study of semi-groups and groups will make the study of finite
state machines and coding theory simpler.

11.8 UNIT END EXERCISE

Q.1 Show that the set of all positive rational numbers forms an

abelian group under the composition defined by
2

ab
a b  .

Q.2 Show that set IN of all natural numbers is not a group with
respect addition.

Q.3 Find the order of the elements of the group 4( , 4)z  .

Q.4 Find the order of the elements of the group ({1, w, w2}, . ).
Where w isa cube root of 1.
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Q.5 Prove that the fourth roots of unity form an abelian group
under multiplication.

Q.6 Prove that the set {0, 1, 2, 3, 4} is a finite Abelian group of
order 5 under addition modulo 5 as composition.

Q.7 Check whether (Z, -) is semi-group or not. Where “-” denotes
integer subtraction.

Q.8 Check whether (Z, +) and (Z, .) are monoids or not.

Q.9 Show that the set of matrices
cos sin

sin cos
A

 

 

 
  
 

, where

IR  , forms a group under matrix multiplication.
Q.10 Show that the integer multiples of 5 form a sub-group of the

additive group of integers.
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12

NORMAL SUBGROUP

Unit Structure

12.0 Objectives

12.1 Introduction

12.2 Product and quotient of algebraic structures

12.3 Homomorphism

12.4 Isomorphism

12.5 Automorphism

12.6 Cyclic groups

12.7 Normal Subgroup

12.8 Codes and group code

12.9 Let us sum up

12.10 Unit end exercise

12.11 References for further reading

12.0 OBJECTIVES :

After going through this chapter students will be able to know:

 Operations like product and quotient of these algebraic
structures.

 Isomorphism, Homomorphism and Automorphism group.

 Generators of Cyclic group.

 Normal sub-group.

 Coding and Encoding of group.

12.1 INTRODUCTION :

After having all the basic property of group and sub-group,
we now begin our journey with more detail about group study. In
this we are going to discuss about product of group and quotients
group, isomorphic group, homomorphic group, automorphic group.
In group theory cyclic group are the simplest group also it is very
interesting. In previous chapter we learn about sub-group, now
here we discuss about cosets and normal sub-group.
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12.2 PRODUCT AND QUOTIENTS OF GROUPS :

12.6.1 Definition : If 1G and 2G are groups then the product of 1G

and 2G denoted as 1G  2G is a group with binary operation

defined by     1 1 2 2 1 2 1 2a , b a , b = a a ,b b

Examples 1: Let  1 2 2G = G = = 0, 1 , 0 is notation for [0] find

1 2G G .

Solution: 1 2 2 2G = G G =  

=         0, 0 , 0, 1 , 1, 0 , 1, 1

Composition table for 2 2  is

x
 0, 0  1, 0  0, 1  1, 1

 0, 0  0, 0  1, 0  0, 1  1, 1

 1, 0  1, 0  0, 0  1, 1  0, 1

 0, 1  0, 1  1, 1  0, 0  1, 0

 1, 1  1, 1  0, 1  1, 0  0, 0

Note that in ( 2 , +), 1 + 1 = 2 = 0 . G is group of order four.

12.3 HOMOMORPHISM

Group of Homomorphism: Till now we have seen the notion of a
group and various type of group. Now we see the relation between
two groups by introducing “Homomorphism”. A relation between
groups G and G, is generally exhibited in terms of a structure
relating map from G to G1.

Let G and G1, be two groups. We are interested in a map that
relates the group structure of G to the group structure of G1, and this
map often gives us information about the structure of G1 from
known structural properties of G, or information about the structure
of G from known structural properties of G1

We known that the group structure is determined by its binary
operation. We now define such a structure relating map for groups,
and then point out how the binary operations of G and G1 are related
by such a map.
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Definition: Let G and G1 be groups. A map f : G → G1 is said to be
Homomorphism

If f(ab) = f(a) f(b) for all a , b ϵ G.
Note: If the operation in G is denoted by ‘*’ and the operation in G1

is The above condition for Homomorphism means the following.
f(aob) = f(a) . f(b).

12.3.1 Properties of Homomorphism
Let G and G1 be two groups. e and e1 be the identity element of G
and G1 respectively. If f is Homomorphism from G to G1 then
f(e) = e1

Range of Homomorphism: G and G1 are two groups and f is
homomorphism from G to G1. The set of all f images of G in G1 is
called range of homomorphism.
It can be written as f (G) = { f (a) / a ϵ G}

12.3.2 Types of Homomorphism
Onto Homomorphism: Let G and G1 be two groups and f is a
mapping from G onto G1.

If f (ab) = f (a) f (b) a, b ϵ G then f is said to be a Homomorphism
from G onto G1.
In some books it is referred as epimorphism.

Endomorphism: A homomorphism of a group into itself is called
an endomorphism.

Monomorphism: If the homomorphism is one-one it is called
monomorphism.

Example 2: Let G be the additive of integers and G1 be the
multiplicative group. Show that f :G → G1

a function defined as f (m) = em is a homomorphism

Solution: Let m , n ϵ G ; f (m) = em ϵ G1 and f (n) = en ϵ G1

m+n ϵ G (G is additive group)
f (m+n) = em+n = em en = f (m) f (n)
f is homomorphism from G to G1.

12.4 ISOMORPHISM

Isomorphism: A function f from G to G1. Is said to be isomorphism,
if
1. f :G → G1 is one-one
2 . f: G → G1 is onto
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3. f: G → G1 is homomorphism.
Says distinct element in G have distinct f - images in G1

Says 1X G a G    such that  f a x .

Says image of the product is same as product of images.

Note: in the above definition, we have denoted the operation as
multiplication. We can use different symbols to denote the
compositions.

Note:There may exists more than one isomorphism from G onto G1.

Example 3: Let G be the multiplication group of all positive real
numbers, and G1 be the additive group of all real numbers. The
mapping defined by f : G → G1 such that f (x) = log x .is
isomorphism from G to G1

Solution: : G → G1 = log x

To prove is one – one

Let x1, x2 ϵ and (x1) = (x2)

⇒ Log x1 = log x2

⇒ 1log xe  = 2log xe 

⇒ x1 = x2

⇒ is one – one from G to G1

To prove is on-to

For any real number yϵG1 ey is a positive real number such
that ey ϵ G

(ey) = log ey = y ϵ G1

Each element of G1 is the - image of some element in G.

i.e. is on-to.

To prove as homomorphism.

Consider x,y ϵG where (x) = log x : (y) = log y

Then (xy) = log (xy)

= log(x) + log(y)

= (x) + (y)

is homomorphism from G to G1

` is isomomorphism from G to G1
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Example 4: There exists isomomorphism from an additive group of
integers.
G = {….,-3, -2, -1, 0, 1, 2, 3…} to another additive group
G1 = {….,-3m, -2m, -m, m, 1m, 2m, 3m…} where m is any fixed
integers not equal to zero.

Solution: Define mapping : G → G1 such that (x) = mx

To prove is one- one : let x1, x2 ϵ G and (x1) = (x2)

mx1= mx2 (from the definition of )
x1 = x2

is one – one from G to G1

To prove is onto: for any element y ϵ G1 y/m ϵ G such that

(y/m) = m(y/m) = y ϵG1

⇒ each element of G1 is the - image of some element in G.

i.e., os on-to.

To prove as n=homomorphism.

Consider x,y ϵ G where (x) = mx : (y) = my

(x + y) = m(x+y)
= mx + my

= (x) + (y)

is homomorphism

Is isomorphism from G to G1

12.5 AUTOMORPHISM OF A GROUP

Definition: If :f G G is an isomorphism from a group G to itself,

then f is called an automorphism of G.

Example 5: If G is an additive group of complex number, show that
:f G G such that f(Z) = pZ where p is a non-zero complex

number, an automorphism of G.

Solution: G is an automorphism if :f G G is an isomorphism.

To prove f is one-one.
Let Z1, Z2 ϵ G and f(Z1) = f(Z2)

PZ1 = pZ2

Z1=Z2

f is one-one.
To prove f is onto.
For any element Z ϵ G there exists Z/p ϵ G such that f(Z/p) =
p.(Z/p) = Z.
Each element of G is the f- image of some element in G.
There fore f is onto.
To prove f is homomorphism.
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Consider f(Z1 + Z2) = p(Z1 + Z2) = pZ1 + pZ2 = f(Z1) + f(Z2)
f is an homomorphism.
There fore f is isomorphism from G to G.
Hence :f G G is an automorphism.

12.6 CYCLIC GROUP

Cyclic group: In the group theory, cyclic group are the simplest are
the simplest among all group all groups. Because of this cyclic
groups possess interesting properties. With the help of cyclic group
we can find answer for some of the difficult questions in group
theory. Now let us see what do we mean by a cyclic group?
The formal definition of a cyclic group is given below.

Definition: A group G is called cyclic if for some a ϵ G, every
element x ϵ G is of the from such that an

Where n is some integer. The element ‘a’ is called a generator of G.
A cyclic group G generated by a can be represented as G = <a>
If G is a group with respect to the binary operation addition, cyclic
group is defined as G = { na / n ϵ Z}

Example 6: G = {1, -1} is a cyclic group generated by -1 ( 1 = (-
1)2, -1 = (-1)1)

12.6.1 Cyclic Subgroup: A subgroup H of a group G is called a
cyclic subgroup if H is a cyclic group.

Note: If a is a generator of a cyclic group G then a-1 is also a
generator

Let G be a cyclic group generated by a.

Then for every x ϵG there exists an integer, such that x = am

= (a-1)-m

Every x can be expressed as integral power of a-1

i.e.,a-1 is also a generator of G.

12.7 COSETS

Definition: If G is a Group and H is a subgroup of G. let a ϵ G
Then

Ha = {ha : hϵH} is called right coset of H in G generated by a.
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And the set aH = {ah: h ϵ H} is called left coset of H in G generated
of a.

Example 7: Let G = { a, b, c, d, e, f} is a group. And H = { b, c, e}
be the subgroup of G.

Solution: a ϵ G : Ha = { ba, ca , ea}

d ϵ G : Hd = { bd, cd , ed} are some right coset of H in G.

c ϵ G : Hc = { bc, cc , ec}

The set aH = { ah : h ϵ H} is called left coset of H in G
generated by a.

a ϵ G : aH = { ab, ac , ae}

d ϵ G : Hd = { db, dc , de} are some right coset of H in G.

c ϵ G : Hc = { cb, cc , ce}

Note: If G is an abelian group then aH = Ha

Example 8: Let G be the additive group of integers, and H is a
subset of group of G where element of H are obtained by
multiplying each element of G by 2.

Solution:
Clearly (H, +) is a subgroup of (G, +).

Now G = {…..-3,-2,-1, 0, 1, 2, 3…}

H = {…..-6,-4,-2, 0, 2, 4, 6…}

1 ϵ G and 1 + H = {…..-5,-3,-1, 1, 3, 5, 7…}

Example 9: Let G= <a> a cyclic group of order 15. List all the cosets
of <a5 > in G.

Solution: Let G = <a> a cyclic group of order 15.

i.e. G = {e, a, a1, a2, ……….., a14}

H is a subgroup of G.

H = {e, a5, a10}

The left cosets of <a5> are

aH = {a, a6 , a11}, a2H = {a2, a7, a12}, a3 H = {a3, a8,a13},

a4 H = {a4,a9,a14} .

Remark: A coset may not essentially a subgroup

Remark: If e is the identity in G, it is also identity in H. Then eH =
{eh/h ϵ H} = H
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12.7.1 Normal Subgroup
If G is a group and H is a subgroup of G, it is not always true that
aH = Ha for all a in G. If it happens i.e.,if Ha = aH a in G we call
H as normal subgroup. And it is denoted by H G.

Definition: If G is a group and H is a subgroup of G.If Hx = xH
xϵG then H is called a normal subgroup.

Note: Every normal subgroup but every subgroup need not be a
normal subgroup.

Importer and proper normal subgroups: G is a group then G , {e} are
subgroup of G and they are also normal subgroups of G. These two
subgroups are called trivial or importer subgroups of “G”

The normal subgroup of G other than these two subgroups are called
proper normal subgroups of G.

For example H = {1,-1} is a normal subgroup of multiplicative
group of none zero real numbers.

Example :- Show that every subgroup of an Abelian group is
normal.

Solution :- Let G be an abelian and H a subgroup of G. Let x be any
element of G and H any element of H.
So, xhx-1 = xx-1

=h […G is Abelian ⇒ x-1h = hx-1]
=eh

⇒ h ϵ H.
Hence x ϵ G,
⇒ h ϵ H

⇒ xhx-1 ϵ H
So H is normal in G.

Example :- Given that H = { I, (12)(13) (34)} is a subgroup of A4.
Show that (243)H = (142)H and (132)H = (234)H but (234)(132)H ≠ 
(142)(234)H. Is H a normal subgroup of Ah? Justify your answer.

Solution :- H = { I, (12)(34)} is a subgroup of Ah.
A4 = { I, (12)(34)(13)(24)(23)(14)(123)(132)(142)(124)}

To show that (243)H = (142)H
(243)(12)(34) = (142)
(243)H = {(243)(142)}

(142)H = i.e. (142)I and (142)(12)(34)
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(142)H = {(142)(243)}
….. (243)H = (142)H

To show that (132)H = (234)H
(132)H = (132)I
(132)(12)(34) = {(132), (234)}
(234I = (234)
(234)(12)(34) = (132)
(234)H = {(234)(132)}

…. (132)H = (234)H
To show that (234)(134)H ≠ (142)(234)H
(234)(132)H = (234)(132)

(234)(132)(12)(34) = I
(142)(243)(12)(34) = (124)
Thus (243)(132)H ≠ (142)(243)H
…GH = HG
… H is normal subgroup A4.

12.8 CODE AND GROUP CODE

Word : A sequence of 0’s and 1’s is called a word.
e.g. 1101, 101, 00100 are words.

Code : A collection of words used to represent different messages is
called code.

Codeword : A word in a code is called codeword.

Block of code : A code consisting of words having same length is
called block of code.

Let B = {0, 1} then   2B B 00,01,10,11 B   i.e. 2B contains

words of length 2, and it contains 4 elements or codes. Number of
elements in the set is called cardinality of the set and it is denoted by
two vertical bar.

Number of elements in set 2 2B | B | 4  . Also |B| = 2.

 2 2| B | | B B | | B | | B | 2 2 2      

 2 2| B | 2 4 

Similarly
3B = B B B  = {000, 001, 010, 011, 100, 101, 110, 111},

| 3B | = | B B B  | = | B | | B | | B |  = 2 2 2  = 32 = 8
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The set mB is collection of codes of length m and it contains m2
codes.

 m m| B | 2

Weight : Let nx B then weight of x is number of 1’s in x and it is
denoted by w(x).

e.g. i) x = 1101 4B w(x) = 3

ii) x = 110010 6B w(x) = 3

iii) x = 11 2B w(x) = 2

iv) x = 0000 4B w(x) = 0

x y : (Read as x ring sum y). Let x, y nB , then x y is a

sequence of length n that has 1’s in those position x and y differ and
0’s in those positions x and y are the same.
i.e. The operation + is defined as
0 + 0 = 0 0 + 1 = 1
1 + 1 = 0 1 + 0 = 1
e.g.

i) 3x, y B , x = 101, y = 110

x = 1 0 1
y = 1 1 0
x y = 0 1 1

 x y = 011 and  w x y = 2

ii) 6x, y B , x = 110100, y = 111111

x = 1 1 0 1 0 0
y = 1 1 1 1 1 1
x y = 0 0 1 0 1 1

 x y = 001011 and  w x y = 3

iii) 7x, y B , x = 1010001, y = 0001010

 x y = 1011011 and  w x y = 5

Distance : The distance between x and y is the weight of x y . i.e.

 w x y , it is denoted by d(x, y). The distance between two words

is exactly the number of positions at which they differ.
 d(x, y) =  w x y .
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It is also called Hamming distance. Minimum distance: Let
nx, y B then minimum distance = min. {d(x, y) : nx, y B }.

Let 1 2 nx , x ,..., x are the code words, let any ix , i = 1, 2, … n

is a transmitted word and y be the corresponding received word.
Then ky x if  kd x , y is the minimum distance for k = 1, 2, …n.

This criteria is known as the minimum – distance criterion.

Encoding function : Let m < n (m, nN, N is set of natural

numbers) then an one to one function m ne : B B is called an (m, n)

encoding function. i.e. for mx B we have ny B such that

e(x) = y.

Detection of errors : Let m ne : B B (m < n) is an encoding
function then if minimum distance of e is (k + 1) then it can detect k
or less than k errors.

Correction of errors : Let m ne : B B (m < n) is an encoding
function then if minimum distance of e is (2k + 1) then it can correct
k or less than k errors.

Example 1 : Let e is (2, 4) encoding function defined as
e(00) = 0000 e(01) = 1011

e(11) = 1100 e(10) = 0110

i) Find minimum distance,

ii) How many errors can e detect,

iii) How many errors can e correct.

Solution :
Let 0x = 0000, 1x = 1011, 2x = 0110, 3x = 1100

i)    0 1 1w x x w x 3  

   0 2 2w x x w x 2  

   0 3 3w x x w x 2  

   1 2w x x w 1101 3  

   1 3w x x w 0111 3  

   2 3w x x w 1010 2  

Minimum distance of e = 2.



230

Note that minimum distance is not unique. There are three pairs
having distance 2.

ii)  k + 1 = 2 k = 1,
 e can detect 1 or less than 1 i.e. 0 errors.

iii)2k + 1 = 2k =
1

2

 e can correct
1

2
or less than

1

2
errors, i.e. e can correct 0

errors.

Example 2 : Let e is (3, 8) encoding function defined as
e(000) = 00000000 e(011) = 01110001

e(010) = 10011100 e(110) = 11110000

e(001) = 01110010 e(101) = 10110000

e(100) = 01100101 e(111) = 00001111
i) Find minimum distance.

ii) How many errors can e detect?

iii) How many errors can e correct?

Solution :
Let 0x = 00000000, 1x = 10011100, 2x = 01110010, 3x =

01100101, 4x = 01110001, 5x = 11110000, 6x = 10110000,

7x = 00001111.

i)    0 1 1w x x w x 4   ,    0 2 2w x x w x 4   ,

   0 3 3w x x w x 4   ,    0 4 4w x x w x 4   ,

   0 5 5w x x w x 4   ,    0 6 6w x x w x 3   ,

   0 7 7w x x w x 4  

Similarly,    1 2w x x w 11101110 6   ,

 1 3w x x 6  ,  1 4w x x 6  ,  1 5w x x 4  ,  1 6w x x 3  ,

 1 7w x x 4  ,  2 3w x x 4  ,  2 4w x x 2  ,  2 5w x x 2  ,

 2 6w x x 3  ,  2 7w x x 6  ,  3 4w x x 2  ,  3 5w x x 4  ,

 3 6w x x 5  ,  3 7w x x 4  ,  4 5w x x 2  ,  4 6w x x 3  ,

 4 7w x x 6  ,  5 6w x x 1  ,  5 7w x x 8  ,  6 7w x x 7 

The minimum distance of e = 1.

ii) k + 1 = 1 k = 0
 e can detect 0 or less than 0 errors i.e. 0 errors.

iii) 2k + 1 = 1 k = 0
 e can correct 0 or less than 0 errors. i.e. 0 errors.
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Example 3 : Compute
1 1 0 1 0 0

0 1 1 1 0 1

1 0 0 0 0 1

0 0 0 1 1 0

   
   
   
   
   
   

Solution :
1 1 1 0 0 0 0 1 0

0 1 1 0 1 1 1 1 0

1 0 0 0 0 1 1 0 1

0 1 0 1 0 0 1 1 0

     
        
     
   
     

 Same digit sum = 0, opposite digit sum = 1

Example 4 : Let B = {0, 1} and + is defined on B as follows.

+ 0 1

0 0 1

1 1 0

Then show that (B, +) is a group.

Solution :
Addition is associative. Here B is set of bits and the operation of on

B is +. B with operation + is associative.
Also 0 + 1 = 1 and 0 + 0 = 0

 0 B is an identity element. Here inverse of each element is

itself. Since 0 + 0 = 0.  10 0 

and 1 + 1 = 0  11 1 

 Inverse of each element exists.
 (B, +) is a group.
Three Cartesian product of groups is again a group.

 nB B B B... n times ... B        with + operation defined as

     1 2 n 1 2 n 1 1 2 2 n nx , x , ..., x y , y , ..., y x y , x y , ..., x y              is also a

group. Here identity element is (0, 0, … 0) nB and every element
is its own inverse.

  nB , is a group. Let nA B such that  A, is a group then

A is subgroup of nB . Now we will see the encoding which uses this

property of nB .
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Check Your Progress :

1. Let 2 6e : B B is an (2.6) encoding function defined as
e(00) = 000000 e(01) = 011101
e(11) = 111111 e(10) = 001110
i) Find minimum distance.
ii) How many errors can e detect?
iii) How many errors can e correct?

2. Let e is (2, 5) encoding function defined as
e(00) = 00000 e(01) = 11011
e(11) = 11100 e(10) = 00101
i) Find minimum distance.
ii) How many errors can e detect?
iii) How many errors can e correct?

Answers :

1. i) Minimum distance of e = 2.

ii) Function can detect 1 or 0 errors.

iii) Function can correct 0 errors.

2. i) Minimum distance of e = 2.

ii) Function can detect 1 or 0 errors.

iii) Function can correct 0 errors.

GROUP CODES:

An (m, n) encoding function  m ne : B B m n  is called a

group code if range of e is subgroup of nB . i.e. (Ran.(e),  ) is a

group. Since Ran.(e) nB and if (Ran.(e),  ) is a group then

Ran.(e) is a subgroup of nB .

If an encoding function  m ne : B B m n  is a group code,

then the minimum distance of e is the minimum weight of a non zero
codeword.

Example 5 : Show that an (3, 7) encoding function 3 7e : B B

defined by
e(000) = 0000000 e(011) = 0111110
e(001) = 0010110 e(101) = 1010011
e(010) = 0101000 e(110) = 1101101
e(100) = 1000101 e(111) = 1111011
is a group code. Hence find minimum distance.
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Solution : Let

0x = 0000000 4x = 1000101

1x = 0010110 5x = 1010011

2x = 0101000 6x = 1101101

3x = 0111110 7x = 1111011

Ran.(e) =  0 1 7x , x , ..., x  

0 0 0x x x  , 0 1 1x x x  , 2 7 5x x 1010011 x   like this we can

compute and this we will present in table.

The composition Table is,

 0x 1x 2x 3x 4x 5x 6x 7x

0x 0x 1x 2x 3x 4x 5x 6x 7x

1x 1x 0x 3x 2x 5x 4x 7x 6x

2x 2x 3x 0x 1x 6x 7x 4x 5x

3x 3x 2x 1x 0x 7x 6x 5x 4x

4x 4x 5x 6x 7x 0x 1x 2x 3x

5x 5x 4x 7x 6x 1x 0x 3x 2x

6x 6x 7x 4x 5x 2x 3x 0x 1x

7x 7x 6x 5x 4x 3x 2x 1x 0x

Like in Example 4 we can verity that (Ran.(e),  ) is group and

Ran.(e) 7B .

Ran.(e) is subgroup of 7B .

 3 7e : B B is a group code.
The minimum distance of a group code is the minimum

weight of non zero code word.
Consider  0w x 0 ,    1 4w x w x 3  ,  2w x 2 ,

 5w x 4 ,    3 6w x w x 5  ,  7w x 6 .

Minimum distance = 2.

Example 6 : Show that an (2, 5) encoding function 2 5e : B B

defined as
e(00) = 00000 e(10) = 10101
e(01) = 01110 e(11) = 11011
is a group code. Hence find minimum distance and also find

how many errors can e detect?
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Solution :

0x 00000 , 1x 01110 , 2x 10101 , 3x 11011

Ran.(e) =  0 1 2 3x , x , x , x  

The composition Table

 0x 1x 2x 3x

0x 0x 1x 2x 3x

1x 1x 0x 3x 2x

2x 2x 3x 0x 1x

3x 3x 2x 1x 0x

Addition is associative

 (Ran.(e), ) is associative. We can see that the first row is same

as heading row.

 0x is identity element. Also 0 0 0x x x  , 1
0 0x x  .

2 2 0x x x  .  1
2 2x x  so on. i.e. inverse of each element exists

which is itself.

  Ran.(e), is a group and since Ran.(e) 5B .

Ran.(e) is subgroup of 5B .

 2 5e : B B is a group code.

Consider,

 0w x 0 ,    1 2w x w x 3  ,  3w x 4 .

The minimum distance of a group code is the minimum
weight of nonzero code word.

Minimum distance = 3.

Here k + 1 = 3, k = 2.

 e can detect 2 or less than 2 errors. i.e. e can detect 0, 1 or 2
errors.

Check your progress :

1. Show that an (2, 4) encoding function 2 4e : B B defined by

e(00) = 0000 e(01) = 0011

e(11) = 1110 e(10) = 1101

is a group code.
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12.9 LET US SUM UP

In this chapter we have learned that

 The product of 1G and 2G denoted as 1G  2G .

 Homomorphism of a group, its property and types of
homomorphism.

 Isomorphism of a group.

 Automorphism of a group.

 Cyclic group and its generators.

 Cosets and normal sub-group and Quotient group.

12.10 UNIT END EXERCISE

Q.1 Define normal subgroup and give one example.
Q.2 If ( C, +) be a group, f:C→C define by f(Z) = for every Z ϵ

C, being conjugate of Z, then show that f is Automorphism.
Q.3 Show that A = ({0, 1, 2, 3, 4, 5}, +6) is cyclic.
Q.4 Show that multiplicative group G = {1, -1, i, -i } is cyclic.
Q.5 Let (Z, +) be the group of integers and N = {3n / n ϵ Z} then N

is a normal subgroup of Z.
Q.6 If G = {1, -1, i, -i } is a group and G’= ({0, 1, 2. 3}, +4) is

another group then show that gG is isomorphism to G’.

Q.7 If :f R R  defined by f(x) = log(x) for every x ϵ R+ then

show that f is isomorphism. Where R+ and R are multiplicative
group.

Q.8 Prove that all finite group of order 2 are isomorphism.

Q.9 Mapping :f G G defined by f(x) = x-1, for all x ϵ G on a

group (G, *) is an automorphism if and only if (G, *) is abelian.

Q.10 Show that the group ({0, 1, 2, 3,……..n-1}, tn ) is a cyclic
group.

Q.11Show that (Un, . ) is a cyclic group of nth roots of unity under
multiplication.

Q.12 If H is subgroup of G and if x ϵ G implies that x2 ϵ H, then
prove that H is a normal subgroup of G.
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Q.13 Compute

0 1 0 1 1 0

1 1 0 0 0 1

0 0 1 1 1 1

1 0 1 0 0 1

   
   
   
   
   
   

.

Q.14 Find weights of the given words a) 001110, b) 0000, c)
111, d) 100100110.

Q.15 Find the distance between x and y

i) x = 00111101, y = 00110010

ii) x = 1010001100, y = 0000111100

Answers :

13

1 0 0

1 1 1

1 1 0

1 0 0

 
 
 
 
 
 

14 a) 3 b) 0 c) 3 d) 4

15. i) 4 ii) 4
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RINGS

Unit Structure

13.0 Objectives

13.1 Introduction

13.2 Algebraic structures with Binary Operation

13.3 Rings

13.4 Integral domain

13.5 Fields

13.6 Ring of homomorphism

13.7 Ring of isomorphism

13.8 Let us sum up

13.9 Unit end exercise

13.10 References for further reading

13.0 OBJECTIVES :

After going through this chapter students will be able to:

 Algebraic structures with two binary operations.

 Definition of ring and its property.

 Zero divisor and integral domain.

 Fields.

 Ring of homomorphism.

 Ring of isomorphism.

13.1 INTRODUCTION :

Groups were studied in the previous chapters, and the
definition of group involves a single binary operation with respect to
addition or multiplication. The distributive laws interlink the two
operators addition and multiplication. This leads us to the study of
one such algebraic system equipped with two binary operations
called as rings.
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Ring is the second algebraic system. The abstract concept of
Rings has its origin from the set of integers. The algebra of rings
follows the pattern already laid out for group. Only difference is
algebraic structures with two binary operations.

13.2 ALGEBRAIC STRUCTURES WITH TWO BINARY
OPERATIONS.

An algebraic structure is a nonempty set together with one or
more binary operation on that set.

Addition and multiplication are both binary operations on the
set R of real numbers is called algebraic structure with two binary
operations. It is denoted by ( R,+, . ).

13.2.1 Rings

Definition: A ring R is a non-empty set with two binary operations
denoted by ‘+’ and with respect to the following conditions.

 R is an abelian group with respect to +,i.e.,

I. a + (b + c) = (a + b) + c  a,b,c ϵ R

II. there exists 0 ϵ R such that a + 0 = a = 0 + a  a ϵR

III. For each a ϵ R, there exists –a ϵ R such that a + (-a) = 0 =
(-a) + a

IV. a + b = b + a  a, b ϵ R

 R is a semi group for i.e., a.(b.c) = (a.b). c  a, b, c ϵ R

 Multiplication distributes over assition, i.e.,

I. a.(b + c) = a.b + a.c  a,b,c ϵ R

II. (b + c).a = b.a + c.a  a,b,c ϵ R

Note: we write a.b as ab.

Now let us see one example that satisfies the above-described
axioms.

Example 1: Set of even integers is a ring with respect to usual
addition and multiplications of integers.

Solution: Let E be the set of even integers i.e.,

E = {2x : x ϵZ}

Let a, b ϵ E where a = 2m and b = 2n

a+b = 2m + 2n = 2(m+n) ϵ E ( m+n ϵ Z)

E is closed with respect to addition.
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Let a, b, c ϵ E where a = 2m, b = 2n, c = 2p

a+(b+c)=2m+(2n+2p)=2m+2(n+p)=2[(m+n)+p]
=(2m+2n)+2p=(a+b)+c

E is associative with respect to addition.

Since 0 ϵ Z, O = 2.0 ϵ E

Consider a + O = 2m+2.0 = 2(m+0) = 2m = a

O is the identity element in E.

For m ϵ Z there exists –m ϵ Z and 2.(-m) ϵ E.

Let –a =2.(-m)

Consider a + (-a) = 2m +2.(-m)

= 2(m+(-m))

= 2.0

= O =(-a) +a

ϵ (-a) is the inverse of a.

Inverse exists for each element in E.

For a, b, ϵ E then a + b = 2m + 2n = 2(n+m) (sum of integers is
commutative) = 2n + 2m

= b + a

E is commutative with respect to addition.

(E, +) is an abelian group.

Consider a, b, c ϵ Z where a = 2m,b = 2n, c = 2p

a(bc)= 2m(2n.2p) =2m,(4np) = 8 mnp

(ab)c = (2m.2n.)2p =(4mn)2p = 8 mnp

a(bc) = (ab).c a,b,c ϵ E

E is associative with respect to multiplication.

Consider a.(b+c) = 2m.(2n 2p)

= 2m. 2n + 2m.2p

= a.b + a.c

Similarly, (b + c).a = b.a + c.a

Distributive laws hold in E.

Hence (E, +, .) is a ring.

Example 2: Show that the set of all rational numbers is a ring with
respect to ordinary addition and multiplication.

Solution: Let Q be the set of all rational numbers.

1) (Q, +) is abelian.
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Closure: Let a, b ϵ Q then a + b ϵ Q

because sum of two rational numbers is a rational number.

Associative: Let a, b, c ϵ Q then (a + b) + c = a + (b + c)

because associative law for addition holds.

Existence of Identity: 0 ϵ Q and 0 + a = a + 0 = a for every a ϵ Q

i.e. 0 is additive identity in Q.

Existence of inverse: for every a ϵ Q, -a ϵ Q and a + (-a) = 0

Hence, additive inverse in Q exists for each element in Q.

Commutative: Let a, b ϵ Q then a + b = b + a

because addition is commutative for rational.

2) (Q, .) is a semi group.

Closure : Since the product of two rational numbers is a
rational number.

a, b ϵ Q then a .b ϵ Q

Associativity: Multiplication in Q is associative.

3) Multiplication is left as well as right distributive over addition in
the set of rational numbers. i.e.

a.(b + c) = a.b + a.c

(b + c).a = b.a + c.a for every a, b,c ϵ Q .

Hence, (Q, +, .) is a ring.

13.3.1 Ring with unity

A ring need not have an identity under multiplication, when
a ring other than {0} has an identity under multiplication; we say
that the Ring is with unity.

Definition: R is called a ring with unity element if there exists 1 ϵ R
such that a1 = a = 1a for all a  0 ϵ R.

Note: A Ring with unity contains at least elements 0 and 1.

Commutative Ring

In a ring, multiplication need not be commutative, when it sis, we
say that the ring is commutative.

Definition: A Ring R is said to be commutative if ab = ba  a, b ϵR.

Example 3: Let the addition and multiplication in Q 2 be defined

as x = a + b 2 and y = c + d 2
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ϵ Q ( 2 ) x + y (a + c) + (b + d) 2

xy = (ac + 2bd) + (ad + bc) 2 is a commutative ring with unity.

Solution: Q( 2 ) = {a + b 2 / a , b ϵ Q}

X = a + b 2 and y = c + d 2 ϵ Q( 2 )

x + y = (a + c ) + (b + d) 2 since a + c and b + d
belong to Q

x + y ϵ Q 2 .

Q 2 is closed with respect to addition.

For x = a + b 2 , y = c + d 2 z = e + f 2 where a,

b, c, d, e, f ϵ Q 2

We have, x + (y+z) = a + b 2 + ((c + d 2 ) + (e + f 2 ))

= a + b 2 + (c + e + (d + f) 2 )

= (a + c + e) + (b + d + f) 2

= ((a + c) + e) + ((b + d) + f) 2

= ((a + c) + (b + d) 2 ) + (e + f 2 )

= (x + y) +

Q 2 is Associative with respect to Addition.

Since 0 is a rational number 0 + 0 2 ϵ Q 2

Consider (a +b 2 ) + (0 + 0 2 ) = (a + 0) + (b + 0) 2

= a + b 2

Similarly (0 + 0 2 ) + (a + b 2 ) = a + b 2 .

Hence 0 + 0 is the identity existing in Q 2

For a, b ϵ Q, -a, -b ϵ Q hence (-a) + (-b) 2 ) ϵQ 2

Consider a + b 2 + ((-a) + (-b) 2 ) = (a + (-a) + b + (-b) 2 ) =

0 + 0 2

Similarly (-a) + (-b) 2 + (a + b 2 ) = 0 + 0 2 .

Hence (-a) + (-b) 2 is the inverse of a + b 2

Inverse exists for each element in Q 2 .

X = a + b 2 and y = c + d 2 ϵ Q( 2 ) where a, b, c, d ϵ Q

Consider x + y = (a + c) + (b + d) 2

Since addition of rational numbers is commutative.
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a + c = c + a and b + d = d + b

x + y = (c + a) + (d + b) 2

= (c + d 2 ) + (a + b 2 )

= y + x

Q 2 is commutative with respect to Addition.

(Q 2 , +) is an Abelian group.

Example 4 : Let (G, *) be an arbitrary commutative group and Hom
G be the set of all homomorphisms from (G, *) onto itself. Then
show that (Hom G, +, .) is a ring with unity, where the operation +
defined by

(f + g)(a) = f(a)*g(a), a ϵ G, for every f, g ϵ Hom G, and ϵ
denotes the functional composition.

Solution:

Closure : For every f, g ϵ Hom G, and a, b ϵ G,

(f, g)(a * b) = f(a * b) * g(a * b)

= (f(a) * f(b)) *(g(a) * g(b))

=(f(a) * g(a) * f(b) * g(b))

= (f + g)(a) * (f + g)(b),

So that the sum f + g ϵ Hom G.

Associative : For every f, g, h ϵ Hom G, and a ϵ G,

We have ((f + g) + h) (a) = (f + g)(a) * h(a)

= ((f(a) * g(a)) * h(a)

= f(a) * ((g(a) * h(a))

= f(a) * (g + h)(a)

= (f + (g+h))(a).

Thus (f + g) + h = f + (g + h).

Existence of identity : For every f ϵ Hom G, there exists
constant mapping Z which map all elements of G on e, the identity
of (G, *) such that

(f +Z)(a) = f(a) * Z(a) = f(a) * e = f(a).

Thus f +Z = f ϵ Z is an identity in Hom G, that is, the
mapping Z in Hom G is the Zero element.

Existence of inverse: For every f ϵ Hom G, ϵ -f ϵ Hom G
defined by (-f)(a) = f(a)-1 , such that , For every a ϵ G,

(f +(-f))(a) = f(a) * f(a)-1 = e = Z(a).
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Which implies that f +(-f) = Z, therefore inverse also exists.

Commutative property: For every f, g ϵ Hom G, a ϵ G, we
have

(f + g)(a) = f(a) * g(a) = g(a) * f(a) = (g +f)(a).

Thus (f +g) = f + g,

Hence (Hom G, +) is commutative group.

Similarly we prove that (Hom G, ϵ) is a semi-group with
identity.

Now to prove that (Hom G, +, ϵ) is a ring with unity there
remains to show that ϵ is distributive over +.

fϵ (g + h)(a) = f(g + h) a) = f( g(a) * h(a)) = f( g(a)) * f( h(a))
= (fϵg)(a) * (fϵh)(a).

Therefore fϵ (g + h) = (fϵg) + (fϵh), similarly, we can prove
right distributive law.

Thus (Hom G, +, .) is a ring with unity.

13.4 ZERO DIVISORS

There are some properties, which are not true in a general
ring. We know that product of two integers is zero, if one among
them is zero, but this may no longer be true in any ring R of 2 x 2

matrices we have
0 0 0 1 0 0

0 0 0 0 0 0

                       
; even through

0 0 0 1

0 1 0 0

           
are non-zero and their product is zero in R.

Definition: Let R be a ring and a ϵ R, b ϵ R both are non-zero but
their product

ab = 0 . Then we say that a, b are zero divisors.

13.4.1 Integral Domain

Definition: A commutative Ring, with unity is an integral domain if
it has no zero divisors and it is donated by the symbol.

For example: The Ring of integrals, rational Numbers, and real
numbers and complex numbers is all integral domain.
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13.5 FIELD

Definition: A commutative Ring R with unit element i ≠ 0 in which 
every non-zero element has an inverse with respect to multiplication
am called a field.

Example 5: Set of Gaussian integers is an integer’s domain but not a
field.

Solution: Set of Gaussian integers Z(i) = {a + ib/a, bϵZ)}

Let x , y ϵ Z(i)

Where x = a + ib and y = c + id where a, b, c, d ϵZ

x + y = (a + c) + (b + d) I = ai + ib1 = a + c and b1 = b + d ϵ Z.

x . y = (ac – bd) + (ad + bc) I

= a2 + ib2 where a2 = ac – bd, b2 = ad + bc ϵZ.

+, . are binary operation in Z(i).

Since the element of Z(i) are integers,

We have that

1. Addition and multiplication are commutative in Z(i)

2. Addition and Multiplication are associative in Z(i)

3. Multiplication is distributive over addition in Z(i)

Clearly, zero element 0 = 0 + 0i ϵ Z and unit element 1 = 1 + 0i ϵ Z

Further, for every x = a + b ϵZ(i), x, y = 0 ϵ x = 0 since x , y are
integers.

Z(i) is without zero divisors.

Hence Z(i) is an integral domain

Let  3 4m i Z i    and
3 4

25 25
n i  

So that          . 9 / 25 16 / 25 12 / 25 12 / 25m n i i         

But n ϵ Z(i), because 3/25 and 4/25 ϵ Z.

So every non-zero element of Z(i) is not invertible

Hence Z(i) is not a field.

13.6 RING HOMOMORPHISM

In groups, one way to discover information about a group is
to examine its interaction with other groups by way of
homomorphism. Now we show that just as a group homomorphism
preserves the group operation, a ring homomorphism preserves the
ring operations.
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Definition: A ring homomorphism f from a ring R to another ring R1

is a mapping from R to R1 that preserves the two ring operations;
that is, for all a, b in R

f (a + b) = f (a) + f (b)

f (ab) = f (a) f (b).

Example: Let / , ,
0

a b
R a b c Z

c

  
   

  
. Prove or disprove that the

map : IR Z  defined by
0

a b
a

c

  

  
  

is a ring homomorphism.

Solution: : IR Z  defined by
0

a b
a

c

  

  
  

.

Let 1 1

10

a b
A

c

 
  
 

and 2 2

20

a b
B

c

 
  
 

1 1 2 2

1 2

( )
0 0

a b a b
A B

c c
 

    
      

    

1 2 1 2

1 20

a a b b

c c

   

     

= a1+ a2

= ( ) ( )A B 

1 1 2 2

1 2

( )
0 0

a b a b
AB

c c
 

    
     

    

1 2 1 1 1 2

1 20

a a a b b c

c c

  

   
  

= a1 a2

( ) ( )A B 

0

a b
a

c

  

  
  

is a ring homomorphism.

13.7 ISOMORPHISM

Definition: A homomorphism f:R → R1 is called an isomorphism if,
f is both one-one and onto mapping.
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Propertied of homomorphism: Let f : R → R1 be a homomorphism
of a ring R into the ring R1 and 0 ϵ R, 01 ϵ R1 be the zero element of
R and R1 then

f (0) = 01

f (-a) = - (a)  a ϵ R

f (a-b) = (a) – (b)  a , b ϵ R

Example :- Consider the sings . S = / ,
a b

a b IR
b a

  
    

and

show that the map  ( )
a b

a bi
b a

 
    

is a ring isomorphism.

Solution :- 2: [ ]C M IR 

( )
a b

a bi
b a


 

    
.

To show that  is homomorphism

A = a+bi B = c+di

 (A+B) =  [a+c+bi+di]

=
( ) ( )

a c b d

b d a c

  
    

= ( ) ( )a b d c di   

( )
( ) ( )

ac bd ad bc
A B

ad bc ac bd


  
      

=
a b c d

b a d c

   
       

= ( ). ( )A B 

To show that  is 1-1
( ) ( )A B 

( ) ( )a bi c di   

a b c d

b a d c

   
       

a = c, b = d ϵ a+bi = c+di
To show that  is onto

For any 2( ( )
a b

M IR
b a

 
  

There exists at b, c ϵ C such that

( )
a b

a bi
b a


 

    

Hence, the map  ( )
a b

a bi
b a

 
    

is a ring isomorphism.
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13.8 LET US SUM UP

In this chapter we have learned
 Algebraic structures with two binary operation.
 Definition of ring.
 Commutative ring and ring with zero divisor.
 Integral domains and fields.
 Ring homomorphism and isomorphism.

13.9 UNIT END EXERCISE

Q.1 Prove that the set I of all integers with ordinary addition and
multiplication as the compositions forms a ring.

Q.2 Show that the set of number given by x +y 5 , where x and y
are integers is a ring with ordinary addition and multiplication as the
two compositions.

Q.3 If E denotes the set of all even integers, then prove that {E, +, .}

is a commutative ring, where a.b =
2

ab
and + is the usual addition.

Q.4 Show that the set of number of the form x +y 2 , x and y are
rational numbers is a field.

Q.5 Show that Z[ 5 ], the set of complex numbers x +y 5 where
x, y are integers, ia an integral domain.

Q.6 Let ‘R’ is ring with unity ‘e’. :f Z R is a mapping defined by

( )f x xe x Z  . Prove that f is ring of homomorphism.

Q.7 Let f be the function from the integer Z onto the even integers
given by f(x) = 2x for all

x ϵ Z. Prove that f is not a homomorphism.

13.10 REFERENCES FOR FURTHER READING

1. University Algebra by N.S. Gopalkrishnan.
2. Contemptary Algebra by Gallian.
3. Discrete mathematics by Kenneth and Rosen.
4. Discrete mathematical structures by Kolman, Busby and Ross.
5. Modern Algebra by Vasishtha.
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14

RECURRENCE RELATION

Unit Structure

14.0 Objectives

14.1 Introduction

14.2 Series

14.3 Sequences

14.4 Fibonacci

14.5 Generating functions

14.6 Recurrence relations

14.7 Applications of recurrence relations

14.8 Let us sum up

14.9 Unit end exercise

14.10 References for further reading

14.0 OBJECTIVES

After going through this chapter you will be able to:
 Series and sequences.
 Generating function.
 Recurrence relation.
 The first order linear homogeneous recurrence relations.
 The second order homogeneous linear recurrence relations.
 The non-homogeneous relations.
 The method of generating functions.
 Applications.

14.1 INTRODUCTION:

We all know that the mathematical induction is a proof
technique that verifies a formula or assertion by inductively
checking its validity for increasing values of n. In a similar way, a
recurrence relation is a counting technique that solves an
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enumeration problem by recursively computing the answer for
successively larger values of n.

The concept of a generating function is one of the most useful
and basic concepts in the theory of combinatorial. The power of the
generating function rests upon its ability nor only to solve the kinds
of problems have we considered so far but also to aid us in new
situations where additional restrictions may be involved.

14.2 SEQUENCES:

A sequence is an ordered list of objects. A sequence is
denoted by  na , where na represents nth term of the sequence

 n . If the list terminates after some steps then we say sequence

is finite otherwise it is called as an infinite sequence.

Example:

(1) 3, 4, 5, 6, 7, 8, 9 is a finite sequence, in this 1a = 3 , 2a = 4 and so

on.
(2) 1, 4, 9, 16, 25,… is an infinite sequence, in this 1a = 1, 2a = 4 ,

3a = 9, ...

(3) -1, 1, -1, 1,… is also an infinite sequence 1a = –1 , 2a = 1, 3a = –1

(4) 1, 3, 7,… is an infinite sequence.

In example (1) we can see that 2 1a = a +1, 3 2a = a +1 and so on i.e.

n+1 na = a +1, where 1a = 3 and n 7 . Similarly in (4) we have,

n+1 na = 2a +1 , where 1a = 1.

A formula, like above is called as recursive formula, where
next term depends on previous term. A recursive formula must have
a starting value (i.e. 1a ).

But in example (2), we have  21a = 1 ,  22a = 2 ,  21a = 3 and so on

i.e.  2na = n means value of n+1'a' does not depend on n'a' such a

formula is called as Explicit formula. Similarly in (3),  nna = –1

value of na it is position number.

The set corresponding to a given sequence is the set of all
distinct elements of a given sequence.
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It can be finite or infinite.

For e.g. (1) for  nna = –1 , corresponding set = {-1, 1}.

(2) for na = n +1, corresponding set = {2, 3, 4,……}

The difference between set and sequence is, in a set order of
the elements is not important but in a sequence order of the elements
is important.

A set is called countable if it is elements can be arranged in
order first, second, third etc. i.e. it is the set corresponding to some
sequence for example, set of Natural numbers, set of rational etc.

A set which is not countable is called as an uncountable set.
For example, set of Real Numbers.

Check your progress :
1. Write a formula for nth term and identify it is recursive or explicit.

(a)
1 1 1

1, , , , ...
2 3 4

(b) 1, 0,1, 0,1, 0, ...

(c) 3, 6, 9,… (d) 2, 5, 10, 17, 26
(e) 5, 25, 125,…

14.3 SERIES

An expression of the form a1 + a2 + a3 + …… + an +
………. which is the sum of the elements of the sequence {an} is
called a series. If the series contains a finite number of elements, it is
called finite series, otherwise called an infinite series.

If Sn = a1 + a2 + a3 + …… + an , then Sn is called the sum of
n terms of the series and is denoted by the Greek letter sigma ∑.

Thus
1

n

n n
i

S a


 .

Example 1: Find the sum of first 20 natural numbers.

Solution: To find sum of first 20natural numbers.
i.e Sn = 1 + 2 + 3 +4 +…..+20.

Here first term = a = 1 and the common difference = d =1
Bye arithmetic progression,
Sn =

=

= 10[ 2 + 19]= 210.
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Check your progress:
1. Find the sum of the series 2+4+6+8+10+……………+38.
2. Find the sum of the series 3+5+7+9+11+……………+53.
3. Find the sum of the series 3+7+11+15+…………….+73.

14.4 FIBONACCI SEQUENCE:

The Fibonacci sequence is a set of numbers that starts with a
one and a zero, followed by a one , and proceed based on the rule
that each number is equal to the sum of the preceding two numbers
is called Fibonacci number and the sequence obtained is called
Fibonacci sequence.

If Fibonacci sequence is denoted by F(n), where n is the first
term in the sequence, the following equation obtains for n=0,where
first two term are defined as 0 and 1 by convention.

F(0) = 0, 1, 1, 2, 3, 5, 8, 13, ……….

14.5 GENERATING FUNCTIONS

Now we see some important polynomial expansions, which
are often used in this chapter.
Polynomial Identities

1.
1

2 31
1 ........

1

n
nx

x x x x
x


     



2. 2 31
1 .........

1
x x x

x
    



3. 2 3(1 ) 1 ........
1 2 3

n nn n n n
x x x x x

n

       
             

       

Definition: Let a0, a1, a2,……… be a sequence of real numbers. The

function

  2
0 1 2

0

f x a a x a x i
i

i

a r





    

is called the ordinary generating function or generating function
for the given sequence.

Example 2: Find the generating function for the binomial theorem .
Solution: For any n  Z+

2(1 ) ................
0 1 2

n nn n n n
x x x x

n

       
            

       
.

So (1 )nx is the generating function for the sequence
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0

n 
 
 

,
1

n 
 
 

,
2

n 
 
 

,……………,
n

n

 
 
 

( ) (1 )nf x x  is the generating function for ( , )ra C n r , the number

of ways to select an r-subset of n-set.

Example 3: Find the coefficient of 5x of generating function
7(1 2 )x  .

Solution : Using the generating function for Maclaurin series.

We write 7 7(1 2 ) (1 )x y   
0

7
( 2 )r

r

x
r





 
  

 
 where y = -2x.

Consequently, the coefficient of 5x is

5 57 7 5 1
( 2 ) ( 1) ( 32)

5 5
x

     
      

   

11
(32) 14,784.

5

 
  
 

Check your progress:
1. Find the generating function for Maclaurin series. [ hint

( ) (1 ) nf x x   ]

2. Find the generating function for
1(1 )

(1 )

nx

x




.

3. Determine the coefficient of 8x of generating function

5

1

( 3)( 2)x x 
.

14.6 RECURRENCE RELATION

A recurrence relation is a recursive formula that counts the
number of ways to do a procedure involving n objects in terms of the
number of ways to do it with fewer objects. That is if a, is the
number of ways to do the procedure with r objects, for r=0, 1,
2,……, then a recurrence relation is an equation that expresses an as
some function of preceding ak ‘ s, k < n. A formal definition is given
after the following example.

A boy has a staircase of n stairs to climb. Each step it takes
can cover either one stair or two stairs. Find the number of different
ways for the boy to climb staircase.
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We solve this using recurrence relation.

n

(n-1)

1na 

(n-2)

2na 

3
n = 3

2
n = 2

1

1a

Fig 14.1

Let an be the number of different ways the boy can climb a staircase
with n stairs.
Thus
a1=1, [one step can be climbed in only one way]
a2=2, [1+1 that is in two steps or both stairs in single step]
a3=3, [1+1+1, 1+2 and 2+1]
etc.
to compute an, the boy can reach n th stair with or without using n-1
th stair using n-1 th stairs he has an-2 ways without using n-1 th stair
(as the has to use n-2 th stair) he has an-2 ways.
Thus

an = an-1 + an-2.

These numbers are well known Fibonacci numbers. Where n th term
is some of previous two terms such dependency gives us recurrence
relation which can be formally defined as:
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“A recurrence relation is a relation among the sequence (an), n=0, 1,
2,….., of the form f(n, a1, a2,….,an ) = 0 for all n ≥ k. ”
Three simple example could be
an – an-1 an-2 = 0, n ≥ 2, (1)
an - an-1 = n, n ≥ 1, (2)
an – a1an-1 – a2an-2 -…..- an-1 a1 = 0, n ≥ 3. (3)
is a linear homogeneous recurrence relation with constant
coefficients,
is a linear non-homogeneous recurrence relation with constant
coefficients,
is a non-linear recurrence relation, and a formal definition is below.
Let k Z+ and Cn (≠ 0), Cn-1, Cn-2,………, Cn-k (≠ 0) be real number. 
If an, for n ≥ 0, is a discrete function , then
Cnan + Cn-1an-1 + Cn-2an-2 +….+ Cn-kan-k = f(n), n ≥ k ,

Is a linear recurrence relation with constant coefficient of
order k. when f(n) = 0 for all n ≥ 0, the relation is called
homogeneous; it is non homogenous.

14.6.1 THE FIRST – ORDERED LINEAR RECURRENCE
RELATION

A linear homogeneous recurrence relation of the form,
an = αan-1

is called the first order homogeneous linear recurrence relation,
where α is a constant.
Since an depends only on its immediate predecessor, the relation is
said to be first-order.
Now the above relation may be defined as the “first – order linear
homogenous recurrence relation with constant coefficients.

General solution
The general solution of the recurrence relation

an = α an-1 (4)

where α is a constant, n ≥ 1, and a0 = A , is unique and is given by
an = Aα n (5)

The expression a0 = A is called the initial condition .
Thus the solution an = Aα n , n ≥ 1, defines a discrete function whose
domain is the set N of all natural numbers.

Example 4: Solve the recurrence relation an+1 = 3an , n ≥ 0, a0 = 5.
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Solution:
The first four terms of this sequence are

a0 = 5,
a1 = 3a0 = 3(5) = 15,
a2 = 3a1 = 3(3a0) = 32 (5) , and
a3 = 3a2 = 3(32(5)) = 33(5).

By using induction, we can easily verify that, the general solution is
an = 5(3n) for each n ≥ 1.
In the general solution, the value of an is a function of n and

there is no longer any dependence on prior terms of the sequence,
once the value of a0 is known.

Example 5: Solve the recurrence relation an = 7aa-1 , where n≥ 1 and
a2 = 98.

Solution:
This is an alternative from of the recurrence relation aa+1 = 7

an for n ≥ 0 and a2 = 98.

From the above formula, we have the general solution an = aa (7) n

Since a2 = 98 = a0 (72) . This gives a0 = 2.
Hence the general solution an = 2(7) n , n ≥ 0 , is unique.

Example 6: A bank pays 6% annual interest on savings,
compounding the interest monthly. If a person deposits 1000/- , how
much will this deposit be worth a year later?

Solution:

We solve the above problem using the recurrence relation
concept as follows.

Let Pn be the deposit at the end of n months.

Given

P0 = 1000,

The rate of interest per annum is 6%, so the monthly rate =
6/12% = 0.005.

Now the recurrence relation for the deposit is,

Pn+1 = P0 + 0.005Pn = PN(1.005)

Where 0.005Pn is the interest earned on Pn at the end of n the month.

The general solution for the recurrence relation is

Pn = P0 (1.005)n
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Consequently the deposit at the end of 12 months is

P12 = P0(1.005)12

= 1000(1.005)12

= 1061.68

14.6.2 Special Cases

Conversion of Non Liner to Linear: In a linear relation there are
no products such as anan-1…, (see equation (1) in the definition of
recurrence relation at the beginning of this chapter) which appears in
the non-linear relation, an+1 – 3anan-1 = 0. However , there are times
when a nonlinear recurrence relation can be transformed into a linear
one by a suitable algebraic substitution.

Example 7: Find a8 if a2
n+1 = 6a2

n , where an > 0 for n ≥ 0 , and
a0 = 2.

Solution:
Given the recurrence relation
a2

n+1 = 6a2
n, where an > 0 for n ≥ 0 , and a0 = 2 (6)

is not a linear one in an

But we transform (6) into linear with the substitution.
bn = a2

n ,
Then the new relation

bn+1 = 6bn for n ≥ 0, and b0 = 4, (7)
is a linear relation
Now the general solution for the new recurrence
relation (7) can be computed using the general solution
method discussed in this section 3.1.
Comparing (6) with equation (4), we observe that
α = 6 and the general solution is

`bn = (α)n b0 = (6)n 4.
Therefore an = 2( ) n for n ≥1.

Consequently a8 = 2( ) 8 = 2592.

Example 8: Find a12, if an+1
2 = 5an

2 , where an > 0 for n ≥ 0 and
a0 = 2.

Solution:
This is a non-linear recurrence relation. This can be converted into
linear by letting bn = an

2. This gives the new relation bn+1 = 5bn for
n ≥ 0, and b0 = 4 which is linear.
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The general solution is bn = 4(5) n.
Therefore, an = 2( ) n for n ≥ 0.

Hence a12 = 2( ) 12 = 31,250.6

14.6.3 Non Homogeneous Relations: The general first order linear
recurrence relation.
With constant coefficients has the form an+1 + can = (n), n ≥ 0

where c is a constant and (n) is a function on the set N of Non

negative integers.

Where (n) = 0 for all n ϵ N, the relation is called homogeneous;

otherwise it is called non homogeneous. So far, we have dealt only
with homogeneous relations. Now we shall solve a non-
homogeneous relation.

Example 9: Find a recurrence relation and solve it for the following
sequence.

Solution:
0, 2, 6, 12, 20, 30, 42…
Hear a0 = 0, a1 = 2, a2 = 6, a3 = 12, a4 = 20, a5 = 30, a6

= 42, and we observe that
a1 – a0 = 2,
a2 – a1 = 4,
a3 – a2 = 6,
a4 – a3 = 8,
a5 – a4 = 10,
a6 – a5 = 12,

These calculations suggest the recurrence relation.
an – an-1 = 2n, n ≥ 1, a0 = 0

To solve this relation, we proceed in a slightly different manner from
the method we used in the previous examples. Consider the
following n equation:

a1 – a0 = 2,
a2 – a1 = 4,
….
….
….
an – an-1 = 2n,

By adding the above n equations we get,
a1 – a0 = 0 + 2 + 6 + 8 + … + 2n

= 2(1 + 2 + 3 + … + n)
= 2[n(n+1)/2] = n2 + n
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Therefore the general solution is
an = n2 + n.

With variable coefficients

We have seen and discussed various types of recurrence
relations, which are with constant coefficients. Now we see an
example of the type with variable coefficients in this section “First
order recurrence relations”.

Example 10:Solve the relation an = n.an-1 , when n ≥ 1 and a0 = 1
Solution: We solve this problem by proceeding as above but differ
in a small manner.

Given the recurrence relation.
an = n.an-1 , when n ≥ 1 and a0 = 1

The first terms of the relation are
a0 = 1,
a1 = 1,a0 = 1,
a2 = 2,a1 = 2.1,
a3 = 3,a2 = 3.2.1,
a4 = 4,a3 = 4.3.2.1,
a5 = 5,a4 = 5.4.3.2.1,

Therefore, an = n! And the solution is the discrete
function an, which counts the number or permutations
of n objects, n ≥ 0.
We have seen the same counting principal in chapter 1
of this book in the permutations section.

14.6.5 THE SECOND – ORDER LINEAR HOMOGENEOUS
RECURRENCE RELATION WITH CONSTANT
COEFFICIENTS

Hear we talk about the relations of particular case in which k = 2,
discussed in section 3.1, equation (3).

The relation of the from
Cnan + Cn-1an-1 + Cn-2an-2 = 0 , n ≥ 2 (8)

Is called the linear recurrence homogeneous relation with constant
coefficients of order 2.

General Solution
As per our discussion 3.1, we found the general solution of

the form
an = crn (9)

Where c ≠ 0, r ≠ 0.
Substituting (9) in (8) we get

Cncrn + cn-1crn-1 + cn-2crn-2 = 0 (10)
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Which becomes
Cnr

2 + cn-1r + Cn-2 = 0. (11)
a quadratic equation of degree two called the characteristic
equation.

Let the roots of the characteristic equation be r1, r2. Then the
following cases arise: roots may be

a. Distinct i.e. r1 ≠  r2,

b. Complex Conjugates or
c. Equal.

Note that to determine the unique solution of a second order linear
homogeneous recurrence relation with constant coefficients we need
to have two initial conditions, that is the value of an for at least two
values of n.

Case (I) Roots are Distinct
Let the distinct roots be r1, r2 and r1 ≠ r2. Since the

general solution of (8) is
an = crn , where r is the root of equation (10), we have

an – r and an = r are both solutions to (8), and

linearly independent.

Therefore the general solution in this case is

an = c1 r + c2 r

Where c1, c2 are arbitrary constants.

Note that the solutions an = r and an = r linearly independent when

the following condition is satisfied.

For c1, c2 ∈ R, if c1r + c2r = 0 for all n ∈ N, then c1 = c2 = 0.

We may find the unique solution by using the initial conditions and
eliminating the arbitrary constants.

Example 11: Solve the recurrence relation an + an-1 – 6an-2 = 0,
where n ≥ 2 and a0 = -1 and a1 = 8.

Solution:
Given the recurrence relation

an + an-1 – 6an-2 = 0, where n ≥ 2 (12)
On substituting the general solution an = crn, c,r ≠ 0 

and n ≥ 2 in (12) we obtain
crn + crn-1 - 6crn-2 = 0

and the corresponding characteristic equation is
r2 + r – 6 = 0.
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Solving the characteristic equation.
r2 + r – 6 = 0
(r + 3)(r – 2) = 0

r = 2, -3.

Since we have two distinct real roots, the general solution is
an = c1(2)n + c2(-3)n

Where c1 c2 are arbitrary constants.

The arbitrary constants are determined using the initial conditions as
follows:

-1 = a0

= c1(2)0 + c2(-3)0

= c1 + c2 (13)
8 = a1

= c1(2)1 + c2(-3)1

= 2c1 - 3c2 (14)
Solving (13) and (14) we find the values of the arbitrary constants as

c1 = 1, c2 = -2.

Case (II) Complex Roots
Let the complex roots be r1,r2. Since the general solution of (8) is

an = crn, where r is the root of equation (10),

an = r and an = r are both solutions to (8), and

linearly independent as in the case(I). Therefore the
general solution in this case is

an = c1r + c2r

Where c1, c2 are arbitrary constants.
Since r1, r2 are complex roots (complex conjugates), let
these roots be
r1= a + ib and r2 = a – ib. now re writing the general
solution we get

an = c1(a + ib) + c2(a – ib) (15)

We may find the unique solution by using the initial
conditions and eliminating the arbitrary constants. And the linearly
independence as is case (I)
Note that the solution contains no complex numbers.
This is demonstrated in the following example.

Example 12: Solve the recurrence relation an = 2(an-1 – an-2), where
n ≥ 2 and a0 = 1, a2 = 2.
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Solution:
Let the general solution be

an = crn, for c, r ≠ 0.
Substituting the solution in the given recurrence
relation we get the characteristic equation.

r2 -2r + 2 = 0.
Solving the above equation we obtain the roots are

r = 1 ± i.
Now we have two independent solutions (1 + i)n and (1 – i)n.

Therefore the general solution is
an = c1(1 + i)n + c2(1 – i)n.

Where c1, c2 are arbitrary complex constants.

Using preliminary concept of complex analysis we rewrite the
general solution without complex numbers and eliminate the
arbitrary constants using the initial conditions as follows.

1 + i = (cos(π / 4) + i sin(π / 4))

and

1 + i = (cos(π / 4) + i sin(π / 4)) = (cos(π / 4) - i sin(π / 4))

These yields

an = c1(1 + i)n + c2(1 – i)n

= c1( (cos(π / 4) + i sin(π / 4)))n + c2( (cos(π / 4)

- i sin(π / 4)))n

`= ( )n(c1(
n(cos(nπ / 4) + i sin(nπ / 4))) + c2((cos(nπ

/ 4) - i sin(nπ / 4))))
= ( )n(k1 cos(nπ / 4) + k2 sin(nπ / 4)).

Where k1 = c1 + c2 and k2 = (c1 – c2)
i.

1 = a0 = k1 cos0 + k2 sin0 = k1.

2 = a2 = (cos(π / 4) + k2 sin(π / 4)) = 1 + k2.

Therefore

k1 = 1, k2 = 1.

The solution for the given initial conditions is then given by

a2 = ( ) n (cos(nπ / 4) + sin(nπ / 4)), n ≥ 0.

Case (III) Repeated Roots
Let the r1, r2 and r1 = r2, in this case we say that the root of

multiplication 2. Since the general solution of (8) is an = crn, where r

is the root if equation (10), we have an = are both solution to (8).

But these two solutions are not linearly independent and we say
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these are dependent solution since one solution is obtained from the
other by just multiplying with 1, i.e. multiples of each other.

To find the general solution in this case is we need one more
independent solution.

Let the independent solution be (n) rn where (n) is not a

constant. Substituting this into the given relation yields a general
solution of the from

an = c1r
n + c2nrn,

And we see this in the example below.

Example 13: Solve the recurrence relation an+2 = 4an+1 – 4an, where
n ≥ 0 and a0 = 1, a1 = 3.

Solution:
First we find the characteristic equation of the given relation

by letting the general solution be an = crn, c, r ≠ 0. This yields the 
characteristic equation

r2 – 4r + 4 = 0.

Solving the above equation we find roots, r = 2,2 the repeated
roots. Now the two dependent solutions are 2n and 2n.

Let the independent solution be
(n) 2n

Where (n) is not a constant.

(n + 2)2n+2 = 4 (n + 1)2n+1 - 4 (n)2n

or
(n + 2) = 2 (n + 1) - (n).

Assuming that the general solution is (n) = an + b, for

arbitrary constants a, b, with a ≠ 0. Hear we choose a = 1, b = 0.

Therefore we find that (n) = n satisfies the above equation.

So n2n is a second independent solution.
Now the general solution is of the form

an = c12
n + c2n2n

Using the initial condition, a0 = 1, a1 = 3 we find that
an = 2n + (1/2)n2n , n ≥ 0.

14.6.6 THE NON-HOMOGENEOUS RECURRENCE
RELATION

A general form of the non homogeneous first and second
order relations are
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an + Cn-1an-1 = (n), n ≥ 1, Cn-1 ≠ 0. (16)

an + Cn-1an-1 + Cn-2an-2 = (n), n ≥ 2, Cn-2 ≠ 0. (17)5

Where Cn-1, Cn-2 are constants and (n) is not identically zero.

General solution
There is no general method for solving non-homogeneous

relation, for certain functions (n) we shall find a successful

technique.

A Special Case
When Cn-1 = -1 in equation (16) we have
a1 = a0 + (1)

a2 = a1 + (2) = a0 + (1) + (2)

a3 = a2 + (3) = a0 + (1) + (2) + (3)

. . .

an = a0 + (1) + (2) + (3)+ … + (n) = a0 +  
1

i n

i
f i



 .

We can solve this type relation in terms of n, if we can find s

suitable summation formula for  
1

i n

i
f i



 .

Example 14:Solve the recurrence relation an – an-1 = 3n2, where n ≥
1 and a0 = 7.

Solution: Hear (n) = 3n2, so the general solution is

an = a0 +  
1

i n

i
f i



 .

= 7 + 3 2
1

i n

i
i



 .

=
  1 2 1

7
2

n n n 


Method of undetermined coefficients

This relies on associated homogeneous relation obtained by
replacing (n) with zero.

Let ( )
na h denote the general solution for the associated homogenous,

relation and ( )
na p be a solution of the given non-homogeneous

relation, the term ( )
na p is called the particular solution. Then

an = ( )
na h + ( )

na p is the general solution of the given relation. We use

the form (n) to suggest a form for ( )
na p

Here is the procedure to find general solution in which (n) = krn, k

is a constant. Consider the non-homogeneous first – order relation.

an + Cn-1an-1 = krn , n ≥ 1, Cn-1 ≠ 0.
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If rn is not a solution of the associated homogeneous relation.

an + Cn-1an-1 = 0, then
( )

na p = Arn,

Where A is a constant. When rn is a solution of the associated
homogenous relation.

( )
na p = Bnrn,

For B a constant.

Now consider the case of the non-homogeneous second – order
relation

an + Cn-1an-1 + Cn-2an-2 = krn, n ≥ 2, Cn-2 ≠ 0

Here we find that

a. ( )
na p = Arn, A is a constant, if rn is not a solution of the

associated homogenous relation;

b. ( )
na p = Bnrn, B is a constant, if ( )

na h
= c1r

n + c2r
n, where r1

≠ r ; and

c. ( )
na p = Cnrn, C is a constant, when ( )

na h
= (c1 + c2n)rn.

Example 15: Solve the recurrence relation an – 3an-1 = 5(7n), where
n ≥ 1 and a0 = 2.

Solution:

Given the non homogenous relation

an – 3an-1 = 5(7n),
(18)

and

(n) = 5(7)n .

The corresponding homogenous relation is

an – 3an-1 = 0.
(19)

Solving (19), the general solution for the homogenous
relation is

( )
na h

= c(3n).

Let the particular solution of (18) be
( )

na p = c(3n).

A is a constant and

(n) = krn = 5(7)n

Now we have
( )

na h
= A (7n)
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Placing the particular solution in (18), we find that

A(7n)- 3A(7n-1) = 5(7n), n ≥ 1

⇒ 7A – 3A = 5(7)

⇒ A = 35/4,

And
( )

na p
= (35 / 4)7n

= (5 / 4)n+1 , n ≥ 0.

The general solution is an = c(3n) + (5 + 4)7n+1

Using the initial condition a0=2 now, we find the value of the
arbitrary constant c,

2= a0
= c + (5 / 4) (7)

⇒ c = - 27 / 4.
Finally the unique general solution is

an =(5/4)7n+1 – (1/4)(3n+3), n ≥ 0.

Example 16:
Solve the recurrence relation an – 3an-1 = 5(3n), where
n ≥ 1 and a0 = 2.

Solution: Given the non homogenous relation
an – 3an-1 = 5(3n),
(20)

And
(n) = 5(3)n

(21)
The corresponding homogenous relation is

an – 3an-1 = 0.
Solving (21), the general solution for the homogenous
relation is

( )
na h

= c(3n)
Here ( )

na h
and (n) are not linearly independent. As a

result ( )
na p of the form Bn(3n). Substituting the

particular solution in the given relation we get
Bn(3n) = 3B(n-1) (3n-1) = 5(3n)

Or
Bn – B(n-1) = 5.

Therefore B = 5.
Hence

an = ( )
na h

+
( )

na p = (c + 5n)3n , n ≥ 0.

With a0 = 2, the general solution is
an = (2 + 5n)3n
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14.7 THE METHOD OF GENERATING FUNCTION

The title of this topic itself indicates that the assistance of
“Generating Function” in solving recurrence relation is involved.
Now we demonstrate the procedure to solve a given recurrence
relation with the help of generating function in the following
example in a systematic procedure.

Example 17:Solve the recurrence relation
an+2 – 5an+1 + 6an = 2, n ≥ 0.
a0 = 3,a1 = 7

Step 1

Multiply the given relation by 2nx  , because 2n is largest
subscript in the relation. This gives us

Step 2
Sum all the equations represented by the result in step (1) and we get

2 2 2 2
2 10 0 0 0

5 6 2n n n n
n n nn n n n

a x a x a x x
      

    
           

Step 3
In order to have each of the subscripts on a match the corresponding
exponent on x, we rewrite the equation in step (2) as

2 1 2
2 1 20 0 0 0

5 6 2n n n n
n n nn n n n

a x x a x x a x x x
    

    
           

Step 4

Let  
0

n
nn

f x a x



  be the generating function for the solution.

The equation in step (3) now takes the form

       
2

2
0 1 0

2
5 6

1

x
f x a a x x f x a x f x

x
       


Or

       
2

2 2
3 7 5 3 6

1

x
f x x x f x x f x

x
       



Step 5
Solving for  f x we have

   
2

2 2
1 5 6 3 8

1

x
x x f x x

x
     


23 11 10

1

x x

x
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Form which it follows that

 
  

  

   

2

2

3 11 10

1 5 6 1

3 5 1 2

1 3 1 2 1

x x
f x

x x x

x x

x x x

 


  

  


    

  
3 5

1 3 1

x

x x




 

Partial fraction decomposition gives us

 
2 1

1 2 1
f x

x x
 

 

   
0 0

2 3
n n

n n

x x
 

 

   

Consequently, an = 2(3n) + 1, n ≥ 0,

Check your progress:

1. The number of bacteria in a culture is 1000, and this number
increases 250% every two hours. Use a recurrence relation to
determine the number of bacteria present after one day.

2. If a person invests Rs.100 at 6% interest compounded quarterly,
how many months, must he wait for his money to double? (He
cannot withdraw his money before the quarter is up.)

3. A person invested the stock profits he received 15 years ago in an
account that paid 8% interest compounded quarterly. If his
account now had Rs.7218.27 in it, what was his initial
investment?

4. Using generating functions solve the recurrence relation

an – 3an-1 = n, n ≥ 0, a0 = 1.

5. Solve the recurrence relation

an+2 = an+1 + an, n ≥ 0, a0 = 0, a1 = 1

6. Solve the recurrence relation

an+2 – 4an + 3an = -200, n ≥ 0, a0 = 3000 , a1 = 3300.
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14.8 LET SUM UP:

In this chapter, we have learnt the following.
 Sequences and series.
 Generating function and Example base on Binomial and

Maclaurin series.
 A recurrence relation is a relation among the sequence (an), n =

0, 1, 2, …, of the form (n, a1, a2, …,an) = 0 for all n ≥ k.

 A linear homogenous recurrence relation of the form,
an = αan-1

is called the first order homogenous linear recurrence relation,
where α is a constant.

 The general solution of the recurrence relation an = αan-1 where α
is a constant, n ≥ 1 , and a0 = A, is unique and is given by an =
Aαn .

 A general form of the non homogenous first and second order
relation are

an + Cn-1an-1 = , n ≥ 1, Cn-1 ≠ 0

an + Cn-1an-1 + Cn-2an-2 = , n ≥ 2,

Cn-2 ≠ 0,
Where Cn-1Cn-2 is constants and  f n is not identically zero.

 Solving various recurrence relations and the method of
generating function.

14.9 UNIT END EXERCISE:

1. Determine the coefficient 7x of generating function 9(1 3 )x  .

2. Solve 1 2 30r r ra a a     given 0 120, 5.a a  

3. Solve 1 22 0r r ra a a    .

4. Solve 1 22 3r r ra a a    with 0 12, 5.a a 

5. Solve the recurrence relation an+an-1-6an-2=0, n2, and a0=-1 and
a1=8.

6. Solve the recurrence relation an+2=4an+1-4an for n2, a0=1, a1=3.
7. Solve the recurrence relation an-3an-1=5(7n) for n1 and a0=2.
8. Solve the recurrence relation an-3an-1=5(3n) for n1 and a0=2.
9. Solve the relation an+2-5an+1+6an=2, n0, a0=3, a1=7.
10. Determine the coefficient 6x of generating function 8(1 5 )x .
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