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1.0 OBJECTIVES

After going through this chapter you will be ableto :

Understand basic tools of discrete mathematics like sets.
Understand different type of sets.

Understand different operation on sets.

Principle of Inclusion- Exclusion.

Solve different examples on sets, and principle of Inclusion-
Exclusion etc.

1.1INTRODUCTION

Sets are one of the most fundamental concepts in
mathematics. It was invented at the end of the 19™ century. It is
seen as the foundation from which al of the mathematics can be
derived. Concept of division of Integers is fundamental to computer
arithmetic. Mathematical structures are useful in Number theory.
Number theory plays an important role in Computer and Internet

security.



1.2SETSAND SUBSETS

1.2.1 Sets

A set is any well defined collection of distinct objects.
Objects could be fansin a class room, numbers, books etc.

For example, collection of fans in a class room collection of
al people in a state etc. Now, consider the example, collection of
brave peoplein aclass. Isit aset? The answer is no because brave
is a relative word and it varies from person to person so it is not a
Set.

Note : Well-defined means that it is possible to decide whether a
given object belongs to given collection or not.

Objects of a set are called as elements of the set. Sets are
denoted by capita letters such as A, B, C etc and elements are
denoted by small letters x, vy, z etc.

If Xisan eement of set A then we write Xe A and if Xisnot
an element of A then wewrite Xz A.

There are two ways to represent a set one way by listing all
the elements of a set separated by a comma enclosed in braces.
Another way of specifying the elements of a set isto give arule for
set membership.

For example, A ={et,a} can be written as
A = {X|Xisaletter in theword eat'}

We have following Basic sets of numbers.

(8 N =set of al Natural numbers.

(b) W = set of al whole numbers
={0,1, 2 3.}

(c) Z =setof dl Integers
={...-2,-1,01,2,3,.....}

(d) Q@ =setof dl rational numbers.

= {%/p,q eZ,q# 0}

(e) R =setof al rea numbers.



1.2.2 Some Basic Definitions —
(a) Empty Set : A set without any element. It isdenoted by @ or { }

For examples,
B={X|X<1 and XeN}=¢

C={X|XeN and X+1=1}=¢

(b) Equal Sets:- Two sets A and B are said to be equal if they have
same elements and we write A = B.

For examples,
(1) A ={X|x isaletterin theword 'ate}

B={y|y isaletterin theword ‘eat'}
..A=B

(2) X={-3,3} and Y :{x|x2 :9,X€Z}
e X=Y

(c) Subset :- Set A is said to be a subset of B if every element of A
isan element of B and thisisdenotedby AcB or BoA. If A
is not asubset of B we write A & B.

For example,
1) A = {1, B={X|X2=LXeZ} then AcB and B z A
QNcWcZcQcR

Note: (1) Every set A isasubset of itself i.e. AcA

(2) If AcB but A«B then wesay A is a proper subset
of B and wewrite AcB. If A isnot aproper subset
of B then we write A  B.

(3) YA forany set A’
(49 A=BiffAcBand Bc A

(d) Finite Set :- A set A with ‘n’ distinct elements, (neN) is called
asafinite set.

For example,
() A ={X|XxeN,5< x< 20}

(2) B={y|y isahair on someoneshead}
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(e) Infinite Set :- A set whichisnot finiteis Infinite.

For example,

(1) A={X|XeR,1< X< 2}
(2) N

3 Q

Note: gisfinite.

(f) Cardinality of a set :- The number of elementsin a set is called
as cardinality of aset and it is denoted by n(A) or |A|.

For example,
(DA={1,2234,5}, |A|=5
(2B=o,B|=0

(g) Power set :- Let A be a given set. Then set of al possible
subsets of A is caled as a power set of ‘A’. it is denoted by
P(A).

For example,

MA={12
PA)={92.{1}.{2}.{1,2}}

Note: (1) If JA| = mthen |P(A)|= 2"

(h) Universal set :- Any larger set which contains some subsets is a
universal set. It isdenoted by U.

For example,
(1) Rcontains Q, Z, W and N.
.. Risauniversa set for Q, Z, W and N. Similarly,Q is
universal set for w and N and so on.

(2) A CPU consist of hard disk, RAM, ROM, Sound Card etc. It
can be treated as auniversal set.

(i) Venn diagram :- A pictoria representation of a set is called as
Venn diagram. Elements of a set are denoted by dots enclosed in
atriangle, asguare or acircle.



For example,
(DA={ab,d (2) B={5,6,7}
A
e d B
b
ed
Fig. 1.1 Fig. 1.2

Check your progress:

1. ldentify each of the following astrue or false.
@A=A b AcA ()ACcA (dAco
(€) A (f) IfA{1} thenP(A) ={¢,A}

2. If A={Xy,3}, thenfind (a) P(A), (b) |A]|(c) [P(A)]|
3. Which of the following are empty sets?

(@) {X|XeN,1<x<2}

(b) {XlXGR, X% =— }

(©) {X|XeW, x+1=1}

(d) {X|XGQ,X2 :3}
4. Draw theVenndiagramfor Nc WcZcQcR.

1.3 OPERATION ON SETS

1.3.1 Basic definitions:

(a) Union of two sets:- Let A and B be two given sets. Union of A
and B is the set consisting of all elements that belong to ‘A’ or
‘B’ anditisdenoted by AUB. AUB={X|X € A or X € B}

For example,
MWA={xvy, z}, B={2, 5}
AUB={X, vy, z, 2, 5

(2) A=N, B=Z
AUB=NUZ={1,23...JU{....2-1,012,...}
= {0 =2-1,01,2,..} =
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Note: (1) If AcB then AUB=B
(QAUA=A
QAU =A

A B

(4) @ Shaded region representsAUB .

Fig. 1.3

(b) Intersection of two sets :- Let A and B be two given sets.
Intersection of A and B is the set consisting of the elements
Present in A and B. (i.e. in both) and it is denoted by ANB .

ANB={X|XeA and XeB}

For example,
(DA ={1,23},B={24,5} thenANB={2}

(20A={1,2,3} andB ={ x,y} then ANB=¢ such sets whose
intersection is empty is called as digoint sets.

Note: ()ANA=A
(2) If AcBthen ANB=A

(3 ANg=4¢
(4) Shaded region represents AN B (5) Digoint sets
U U
(&) OC
) OO
Fig. 1.4 Fig. 1.5

Definition for union and Intersection can be extended to ‘n’
number of sets. (neN)

(c) Complement of a set :- Let U be agiven universal set and let A
be any subset of U. Then complement of aset A in U is set of
those elements which are present in U but not in A and it is

denoted by A® or A’ or A.
e A®={X|XegA & XeU}




For example,
(DIf A=N and U=W then A®={0}but if U=Z then

A®={..-2-1, 0}i.e. complement of aset dependson U.

/ U

A

Fig. 1.6
Shaded region is A°.

(d) Complement of A with respect to ‘B’ isthe set of al elementsin
B whicharenotin A anditisdenoted by A —B or A\B.
i.e. A-B={X|X € A and X € B}
Similarly, we can define B—-A.
For example,

()A={1,2 3} andB={3,4,5)
A-B={1,2} and B—A={4, 5}

(2)A={1,2 and B ={3, 4}
A-B=AandB-A=B

U U
AzZ B A:KE B
Fig. 1.7 Fig. 1.8
A-B B-A

(e) Symmetric difference of two sets :- Symmetric difference of two
sets A and B is the set of elements present in A or in B but not
both and it is denoted by A@B=(A -B)U(B-A).

U
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Check your progress:

1. If A=U (U- universa set), then (@) A®, (b) A\U, (C) U\A,
(d) A®U

2. If U={X|XeN and X <17} and A ={1, 3,5,6},B={3,4,7,
5, 8}, then (@) A, (b) A\B, (c) B\A, (d)A®B, (e)B®, (f)AUB,
(9ANB.

1.3.2 Algebraic Properties of set operations

Like Algebraic properties of Rea numbers, sets also satisfy
some Algebraic Properties with respect to the operations union,
intersection etc.

() Commutative Properties
(1) AUB=BUA
(2) ANB=BNA

(I Associative Properties
(3) AU(BUC)=(AUB)UC
(4 AN(BNC)=(ANB)NC

(111)  Distributive Properties
(5) AN(BUC)=(ANB)U(ANC)
(6) AU(BNC)=(AUB)N(AUC)

(V) Idempotent Properties
(7) AUA=A
(8) ANA=A

(V) Properties of Complement
@)QQ:A
(10) AUA=U
(11) ANA =D

éﬂ ? } (De Morgan’s laws)
AUB
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Properties (1) to (13) can be proved easily. We will prove (14) and
(15) here.

(14) AUB=ANB
Proof : AUB={X|xg(AUB) and XU}
= {xI(

|(X¢ A and XeU) and (XgB and XeU)}
—{ |[Xe A and Xeg}
= ANB
Similarly, we can prove (15).

Example 1. Provethati) (AUB)N(AUB®)=A and
i) (ANB)U(ANB) = A.
Solution: L.H.S.= (AUB)N(AUB®)

= AU(BMNB") ( Distributive law)
= AU¢ (BNB®=¢ complement law)
= A

=R.H.S

Hence(AUB)N(AUB®) = A.
Similarly, we can prove(ANB)U(ANB®) = A.

Example 2: If U = {x\x is a natural number less than 20} is the
universal
set, A={1,34,509}, B={35,7,9, 12}. Verify that
De Morgan’s laws.

Solution: De Morgan’s laws can be state asi) AUB=ANB,
i) ANB=AUB.

By listing method,
U={123,4,56,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19},
and A ={1, 3, 4,5, 9},

A={26,7 8,10, 11, 12, 13,14,15,16,17,18,19},
and B = {3,5,7,9,12},

B= {1, 2, 4,6, 8, 10, 11, 13, 14, 15, 16, 17, 18,19}
AUB={1,3,4,57,9 12}
(AUB)={2, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19}
Also (ANB)={2, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19}
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Hence AUB=ANB.
Now (ANB)={3,5, 9},
(ANB)={1,2,4,6,7,8,10, 11, 12, 13, 14, 15, 16, 17, 18, 19}
Also (AUB)={ 1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19}
Hence ANB=AUB.

Example 3: If u={1,2,3,4,5,6,7,8,9,10,11,12} isthe universal set.
A={2,3,5,8,10}, and

B={4,5,7,8,9,11}, find.

). A-B, ii). B-A, iii). (A—B).

Solution:-i). A-B={2,3,10}
ii). B-A={4,7,9,11}
iii). (A-B)={1,4,5,6,7,8,9,11,12} .

1.3.3 Principle of Inclusion — Exclusion (The addition Principle)

Theorem (1) If A and B be two given finite sets, then we have
|AUB| =|A|+|B|-|ANB.

(DLetA={ab,c,dtandB={e d, p, q}
. ANB={c, d}
i.e.JA|=4, B|=4and |ANB|=2

". By addition principle, [AUB|=4+4-2=6

Example 4: In a class of 50 students, 25 like Maths and 15 like
Physics, 10 like both Maths and Physics. So find (a) How many
like Maths or Physics? (b) How many do not like any or the
subjects?

Solution : Let m be the set of all those students who likes Maths and
‘P’ bethe set of all those students who likes Physics.

" M|=25, |P|= 15and MO P| = 10

(a) No. of students like atleast one subject
= |[MUP =|M|+|P-|[MNP| (by Addition formula)
=25+15-10
=30
(b) No. of students do not like any of the two subject
= 50—|M U P =50-30=20
Above theorem can be extended to three sets, —
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Theorem :- If A, B and C be given finite sets, then
AUBUC|=[A|+[8[+|c|~]ANB|~[BNC|-]aNC|+/aNBNC]

Example 5

In a survey of people it was found that 80 people knew
Maths, 60 knew physics, 50 knew chemistry, 30 new Maths and
Physics, 20 knew Physics and Chemistry, 15 knew Maths and
Chemistry and 10 knew all three subjects. How many people knew?

(a) At least one subject

(b) Maths only

(c) Physics only

(d) Maths and Chemistry only

Solution : Let M, P, C represents respectively, the set of students
knowing Maths, Physics and Chemistry.

J.IM| = 80, |P| = 60, |C| = 50, MNA=30, [MNC|=15,
IPNC|=20, |MNPNC|=10
(a) By addition principle
IMUPUC =|M|+|P+|C|-[MNA-|MNC|-|PNC|+MNPNC|
=80+60+50-30-15-20+10
=135

Let’sdraw the Venn diagram of above situation.

M & P
w/

Fig. 1.10
(b) Mathsonly =80 — (20 + 10 + 5)
=80-35
=45

(c) Physicsonly =60 —(20+ 10 + 10) = 20
(d) Maths and Chemistry only =15-10=5

Example 6: Out of 150 residents a building, 105 speak Marathi, 75
speak Gujarati and 45 speak both Languages. Find the number of
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residents who do not speak either of the languages also find the
number of residents who speak only Marathi.

Solution:- Let A be the set of resident who speak Marathi.
B the set of resident who speak Gujarati
Given |U|=150
A | =105
B|=75
ANB | =45
By principal of Inclusion-Exclusion.
|AUB|=|A|+|B]|-|ANB|
= 105+75-45
=135.
i). Number of resident who do not speak either of language.
|(AUB)' |=|U|-|AuB|
=150-135

=15
i1). The number of resident who speak only Marathi

=|A]-|AnB]

=105-45

=60.
Example 7: Out of 240 students in college 130 students are in
N.C.C. 110 are in N.S.S. and 80 are in other activity in this 40 are
N.C.C. and N.S.S bhoth, 35 are N.C.C and other activity and 30 are
N.S.S. and other activity but 20 student are take part in all three.

Find the number of students takes part in

i). Atleast any one.

ii). None of them.

iii). Only N.S.S.

iv). Only other activity.

V). Only N.S.Sand N.S.S but not in other activity.

Solution:- Let A bethe set of N.S.S students.

B be the set of N.C.C students.

C be the set of other activity student.
Here | A |=130, | B| =110, | C|=80.
| AnB | =40, | ANC| =30, | BNC| =35, | ANBNC|=20.

By principle Inclusion-Exclusion
i). atleast one of themi.e. | AUBUC |
AUBUC|=|A|+|B]|+|C|-|ANB]|-|BNC]-
ANnc|+[ANBNC]|
=130+110+80-40-35-30+20
=235.
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ii). None of themi.e. | (AUBUC)’ |

| (AuBUC) |=|U|-|AUBUC|
=240-235
=5.

iii). Only N.S.S. i.e.
=|A|-]ANB| -|ANC|+|ANBNC|
=130-40-30+20
=80.

iv). Only other activity i.e.
=|c|-|Anc|-|BNC|+]|ANBNC]|
=80-30-35+20
=35.

V). Only N.S.Sand N.C.C. but not other activity i.e.
=|AUB|-|ANBNC|
=40-20
=20.

Example 8. Find the number of integersincluding both from 1 to
500 that are divisible by,

i).2or 3orb5.

ii). 2 or 3 but not 5.

iii). Only by 5.

Solution:- HereU={1,2,3,............ ,500}
A=the set of numbersin U divisible by 2.
B= the set of numbersin U divisible by 3.
C=the set of numbersin U divisible by 5.

|u|=250, |A|= 5—20:250
|B|:[@1:166
3
|C|:[@1:100
3
|AUB|:@:@1283
2x3] | 6
|BﬂC|:l5—m1:33
15
|CcnA | = S0 | _ g4
2%x5
|AnBNC| = >0 :l‘r’oﬂzm
2x3x5 30
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i) AUBUC |=|A+|B|+|C|—|ANB|—|BNC|—|ANC|-|ANBNC]|
= 250+166+100-83-33-50+16
= 366.
ii). 2 or 3 but not by 5.
=|AUB|-|ANBNC|
=83-16
=67.
iii). Only by 5.
=|c|-|Anc|-|BNC|+|ANBNC]|
=100-33-50+16
=33.

1.7LET USSUM UP

This chapter consist of sets and different operations on sets
with different examples which helps in better understanding of the
concept and able to use in different areas. We saw the principle of
inclusion — Exclusion which can be used in different counting
problems we saw some concepts of number theory such as division
in Integers, sequence etc. which is useful in computer security. At
the end we saw definition of a mathematical structure and it is
different properties.

1.8 REFERENCES FOR FURTHER READING

a) Discrete structures by Liu.
b) Discrete mathematicsits Application, Keneth H. Rosen TMG.

c) Discrete structures by B. Kolman HC Busby, S Ross PHI Puvt.
Ltd.

d) Discrete mathematics, schaum’s outlines series, seymour Lip
Schutz, Marc Lipson, TMG.

1.9UNIT END EXERCISES

1. LetA:{x|x€JR< and x2+7:0}, B={X|XeZ},

C={X|XeR,0<X<02}, D={X|X=60q,qeZ}
E={X|XeR,X+7=7}
Check whether following are True or False.
(i) Aisfinite, (ii) B A, (iii) E=A, (iv) EUACcD,
(v) Cisinfinite, (vi) B=7Z, (vii) AcE, (viii) BNC=A
2. ProveA-B=A—-(AN B)
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There are 250 students in a computer Institute of these 180
have taken a course in Pascal, 150 have taken a course in
C++, 120 have taken a course in Java. Further 80 have taken
Pascal and C++, 60 have taken C++ and Java, 40 have taken
Pascal and Java and 35 have taken all 3 courses. So find —

(d) How many students have not taken any course?

(b) How many study atleast one of the languages?

(c) How many students study only Java?

(d) How many students study Pascal and C++ but not Java?

(e) How many study only C++ and Java?

The students stay in hostel were asked whether they had a
textbook r a digest in their rooms. The results showed that
650 students had a textbook, 150 deed not have a textbook,
175 had a digest and 50 had neither a textbook nor a digest.
Find, i). the number of studentsin hostel , ii).How many have
atextbook and digest both, iii). How many have only a digest.

. Provethat (B°NU)N(A°U@)=(AUB)".
. Provethat , i).AU(ANB)=A, ii). AN(AUB)=A.

. Inasurvey of 80 people in Gokuldham 50 of them drink Tea,
40 of them drink Coffee and 20 drink both tea and coffee.
Find the number of people who take atleast one of the two
drinks also find the number of students who do not take tea or
Coffee.

. Inasurvey of 60 people, It was found that 25 read magazine.
26 read Times of India and 26 read DNA. Also 9 read both
magazine and DNA, 11 read both magazine and times of
India, 8 read times of India and DNA and 8 are not reading
anything.

i). Find the number of people who read all three.
ii). Draw aVVann diagram.

iii). Determine the number of people who read exactly one
magazine.
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Let ussum up

Unit End Exercise

2.00BJECTIVES

After going through this chapter you will be able to:

Learn about the propositions related to Logical Operations.

Learn about negations and various connectors like conjunction,
disunction.

Learn about Quantifiers and Conditional and bi-conditional
statements.

Solve problems using the method of Mathematical Induction.

2.1 PROPOSITIONSAND LOGICAL OPERATIONS

The statement in English need not always be true or false

whereas a statement in Logic is a declarative sentence which is
either true or false but not both. Identify the statements among the
following sentences.
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1. It will rain today.....

2. Mumbai is capital city of Maharashtra.
3. Do you know where is Vijay ?
4.2x3-5=1

5 x2—1=4.

6. Comein!

In above, sentences (1), (2) and (4) are statements. (3) isnot a
statement as it is question,(5) is declarative but depending upon the
value of x it is true or false. Sentence (6) is a command and hence
not a statement.

2.1.1 Logical connectives and compound statements.

Just as in mathematics variables x, vy, z, ... can take real values
and can be combined by operations +,—,x,+, in logic, the variables p,
g, r, .. can the replaced by statements. The variable p, q, r, .... are
called as propositional variables. For example we can write p : Sonia
Gandhi is president of India, g : Newton was a Physicigt, r : It will
rain today. etc. One can combine propositional variables by logical
connectives to obtain more complex statements - compound
statement. For example suppose Q Mangoes are ripe, R : Oranges
are sour. The statement Q and R means Mangoes are ripe and orange
is sour. The truth value of compound statement depends on truth
values of statements which are combined and on the logical
connectives that are used. In this subsection, we will discuss most
commonly used logical connectives.

2.1.2 Negation :

Suppose P is any statement. Then negation of P, denoted
by~ p. Thusif Pistruethen ~ p isfase and vice aversa. A table
giving truth values of compound statement in terms of compound
parts is known as truth table.

p | -p
T F
F | T

Strictly speaking not P is not compound statement as it is unary
operation.

Example 1 Give negation of
1. p:ltishot.

2. q: 2isadivisor of 5.
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Solution :
1. ~P: Itisnot the case that it ishot i.e. it is not hot.
2.~0: 2isnot divisor of 5. Sinceqisfase, ~q istrue.

2.1.3 Conjunction

The next operation is conjunction. If p and q are two
statement then conjunction of p and g is the compound statement “p
and g’. The notation is paq. The operation and is a binary

operation on the set of statements. The p A g istrue whenever both p
and g on true, false otherwise. Thus the truth table is given by

pl g| Pra
T[T] T
T|F| F
FIT| F
FIF| F

Example 2 Form the conjunction of p and g.

1. p: 1 will drive my car g: | will reach the office in time.
2.p: 2isevenq: 11isodd.

3.p:2+3+1=6Q0:2+3>4

4. p: Delhi is capital of Indiaqg: Physicsis a science subject.

Solution :
1. paqis®l will drivemy car and | will reach officein time”.

2."2isevenand 11 isodd".
3.“2+3+1=6and2+3>4".
4. “Delhi is capital of Indiaand Physics a science subject”.

2.1.4 Digunction

The second logical connective used is digunction.
Digunction of statements p and q is dented by pv q,which means p

or g. The statement pv q istrue where p or g or both are true and
isfalse only when both p and q are false.

Thetruth table for pv q isasfollows.

p[ g Pvad
T[T T
T|F| T
FlT| T
FlF| F
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Example 3 Form the disjunction of

1. p: Bananaras is on the bank of holy river Ganga. g: Dehra Doon is
capital of Uttaranchal.

2. p: Eiffel tower isin London. g: Panama cana connects Atlantic
ocean with Pacific ocean.

3. p: Mukesh and Anil are sons of Industrialist Late Dhirubhai
Ambani. g: Rajbhavan is official residence of the Governor of
M aharashtra.

4.p: +/3 isrationa. g; -10 is odd integer

Solution :
The statement pv g isgiven by

1. Banaras is on the bank of holy river Ganga or Dehradoon is
capital of Uttaranchal.

2. Eiffel Tower is in London or Panama canal connects Atlantic
ocean with Pacific ocean.

3. Mukesh and Anil are sons of late Industrialist Dhirubhai Ambani
or Ragbhavan is official residence of the Governor of
Maharashtra.

4. /3 isrational or - 10 is odd.

The statements 1, 2 and 3 are true whereas 4 is false since p
and g are both false.

Note that in logic we can join two totally unrelated sentences
while in English, we do not combine.

In mathematics or in Computer Science, connective or is used
ininclusivesense. That is pv q istrueif trueif pistrue or qistrue

or both are true. Consider the statements p: 2 is a prime number and
g: 2 is composite. Here the composite statement pvq is the

statement “2 is prime number or 2 is composite”’. Since exactly one
of pand g can betrue, v isused in exclusive sense.

A compound statement may have many Components each of
which is if self a statement. pv(qa(par)) involves three
prepositions p, g and r. The prepositions p, g and r each may be
independently true of false. Hencethere arein all 22 = 8 possibilities
in the truth table of pv(ga(par)). In generd, if a statement

involves n propositional variable, then there will be 2" rows in its
truth table.
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Example 4 Make atruth tableif (pvq)a(~q).

pl q] PVvQ A ~(
T T T F F
T| F T T T
FI T T F F
F| F F F F

2.2 CONDITIONAL STATEMENTS

Observe the following sentences that we use in day to day life:-

1. If it is very hot in summer then there is a chance of early
monsoon.

2. If | see you talking then | will give you a punishment.
3. If I am not in agood mood then | will go for swimming.
4. If | take stress then my blood pressure will increase.

Such sentences are called as conditional statements or implication.
In logic, a compound statement of the type “If p then " is called as
conditional statement or implication. p is called as hypothesis or
antecedent and q is called as concluson or consequent. The
notation for connective if then is denoted by: p=q.

Example 5 Write implication for each of the following.
1. p: | have headache qg: | will take aspirin.

2. p: | takeawalk g: | will reach late.

3. p: 2divides 10 g: Rajiv will go to movie.

Solution : p= q in each of the caseis given by

1. If | have a headache, then | will take Aspirin.
2. If | take awalk then | will be late.
3. If 2 divides 10 then Rgjiv will go for amovie.

Note than in 1 and 2 given above, we are assuming that p is cause of
g- Butinlogic, p= q meansthat if pistrue then q will also be true.

Hence it is not possible to have p to be true and q is false. Thus
p=q is fase only when p is true and q is false. In al other

possibilities p= q isaways true.
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Thetruth tablefor p= q isasfollows.

pl gl P=a1
T[T] T
T|F| F
FIT] T
FlF] T

Example 6 Determine truth value of the following :
1. If 3iseven then Indiawill win world cup football.
2. If 2+ 5 =7 then Sonia Gandhi is the prime minister of India

Solution:

1. Thisistrue sine 3 is even is false. Note that when pisfase, p =
g isawaystrue for any q.

2. Thisisfalse because 2 + 5 = 7 is true and Sonia Gandhi is PM is
false.

In mathematics we say p impliesq or if pthenq, qif p, pis
sufficient for g or q is necessary for p. If p= q isthe implication ;
then the statement q—= p is caled its converse which aso is an
implication. The contra-positive statement of the implication p= q
isthe statement ~q=~p.

Example 7 Give contra-positive and converse of the following
statements.

1. If I am hungry then | will eat.

2. If the three sides of a triangle are equal then each angle of the
triangle is of measure 60°.

3. If today is Sunday then | am going for a movie.

Solution

1. Let p be the statement | am hungry and g be the statement | will
eat. The converse is If | will eat then | am hungry while contra-
positive is the statement If | will not eat then | am not Hungry.

2. If each angle of atriangleis of measure 60° then the three sides of
the triangle are equal (Converse); If each angle of atriangle is not
of measure 60° then the triangle is not an isosceles (contra-
positive).
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3. If I go for amoviethen it is Sunday (converse); If | do not go for a
movie then it is not a Sunday (contra-positive).

Example 8 : Translate each of the following in verbal language.
p: Hardwork.

g: Success.

(i) (=p) A (~0), (i1). pA~q, (iii). p—q, (iV). ~q—>~p

Solution : (i). No hardwork and no success.
(i). Hardwork but not success.

(ii1). If there is hardwork then there is a success.
(iv). If no success then no hardwork.

2.2.1 Quantifiers

A set can some times be conveniently denoted as {x | P(x)}
which means that an element x is in the given set if it satisfies the
given property, P(x). For example the set {0,+2,+4,£6,.....} can be

described by {x | x isan even integer}. The sentence P(x) is called as
predicate or propositional function. Let A = {0,£2,£4,+6,.....}.

Then the sentence P(x) “x isan even integer”. Since P(2) istrue, 2 €
A whilel ¢ A asP(1) isnot true. The universal quantification of a
predicate P(x) is the sentence “for al values of x, P(x) is true¢’” and
we write this as v x P(x). The symbol Vv is called as universal
quantifier. We now discuss few examples.

Example 8 (a) Suppose P(x): 2x + 1 is an odd number is a predicate
that is true for all real numbers x. Hence the sentence v x P(X) is
true. (b) Let

Q(X): x* — 9 < 16. In this case ¥ x Q(X) is not true since Q(10) is not
true.

A predicate may contain several variables and universal
guantification can be applied to each of them. For example
VX Vy Vz (Xy)z = X(yz) means that the property that the
multiplication is associative istrue for all real numbers x,y and z.

The existential quantification of a predicate P(x) is the
statement “there exist some value of x for which P(x) is true”. We
write this symbolically as 3x P(x). The symbol 3 is caled as
existential quantifier. in English, 3x can aso be described as” there
issome x” “thereis at least one value of x”.
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Example 9 Let x and y be any two real numbers.

() The statement IxVy x + y =y is true since real number 0 has
the property that 0 + y =y for all real numbersy.

(b) The statement v x3y X +y =y is not true since for real number
1 thereisnoreal number y suchthat 1 +y =vy.

Let p: vXx P(x). Then p will befaseif thereis at least one value of x
for which P(x) isfalse. Thusthereis at least one value of x for which
~P(x) istrue. Thus pisfalseif I3x ~P(x) istrue. Let g: Ix Q(X).
Then g isfalseif there does not exists any value of x for which Q(x)
is true i.e. for all values of x, ~Q(x) is true. Thus q is false if Vv x
~Q(X) istrue.

Example 10
(d) Let p: For al integers n, 3n-7 a perfect square. Then ~p is the
statement. There exists at least one integer n for which 3n- 7 isnot a
perfect square.

X% +1
X2 -1

(b) Let g: there exists areal number x such that 2< . Then ~q

x2+1
x2—1

isthe statement For all real numbers x, 2>

2.2.2 Bi-conditional

Bi-conditional or equivalence of two statements p and g means both
p=qandq= pand isdenoted by p< q. Thetruthtableof p< q
isgiven below.

rrp=ql|sg=p]|r

N 4o
N -7 -Hle
— 71— -

=TT H|>

—H—m-

Notethat p—= q istrueif ether p, q are both true or both false.

Example 11 Compute the truth table of (p=q) < (~q=~ p)

pa| P=ad]|~p| ~q| ~A=~P [(p=ag)=(~q=>~p)
TT T F| F T T
TF F T| F F T
FT T F| T T T
FF T T T T T
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Note that last column of the above table indicates that the statement
(p=0q)<(~q=~p) is adways true. Such a statement is called as

Tautology. A statement that is always falseis called as Contradiction
or absurdity. Any other statement is called as contingency.

Check Your Progress :
1) Translate each of the following in verbal language.
a) p: Teacher is present

g: student attend the class.

) pva, (i) pAg, (ii).p—q, (iv).p—q, (V). geop
b) p:2is an even number.
g: 2 is a prime number.

r 2+2=(2)*.
(). p—q, ii). g—p, (iii). p—q, (iv). p—(q V1), (V). ~pAd,
(vi). pV ~r, (Vii). ~p—(~p A ~T).

2).Write down the following conditional statementsin converse
contra positive and inverse.
a). If it isa Sunday then it isa holiday.
b). If the teacher is present then students are standing.
c). If you know mathematics them you know logc.

3) Which of the following statements are Tautology, Contradiction
or Contingency?

1 (q/\ p)v(q/\ ~ p)

2. (pva)v(~pva)

3. pA~p

Similar to the mathematical structure [Sets, U,N], one can

define a structure on set of proposition with the help of binary
operationsv,and ~.

The operations for propositions have following properties
which we list as theorem. The proofs are very ssimple and hence are
|eft as an exercise to the reader.

2.3 THEOREM

A. Commutativity
(@ pva=qvp
(b) prg=qnap
B. Associativity
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(@ (pva)vr=pv(qvr
(b) (pAg)ATr=pAa(qnar

~ —

C. Distributivity
(@ pv(aar)=(pva)a(pvr)
(0) pa(avr)=(pag)v(par)

D. Idempotent Property
(@ pvp=p
(b) pvp=p

E. Properties of negation

@ ~(~p)=p

(b) ~(pva)=(~p)r(~q)

(©) ~(pra)=(~p)v(~a)

F. Properties of implication

@ (p=a)=(~g=(~p))

(b) (p=a)=((~p)va)

© ~(p=a)=((pPr~a)v(~ prq))
d (p=a)=((p=0a)r(a=T))

Standard way of proving al the above properties is to
construct truth table. In some cases one can also use previous results.

24 MATHEMATICAL INDUCTION

We now use the ideas developed so far and demonstrate an
important technique of proof- Principle of mathematical induction
which is an indispensable proof technique, extensively used in
mathematics. Suppose P(n) is some statement or property or a
formulato be verified where n is an integer. We need to establish the
formula P(n) is true for al integers n>n,, where n, is some fixed

integer. This can be achieved as follows. First we establish the
validity of P(n)for n = ny. Thisstepiscalled as basis step. Next we
show that P(k) = P(k+1) is a tautology I.e. assuming the
validity of P(k), we establish the validity of P(k + 1) for any integer
k> ng. This step is called as induction step. Usually some efforts

are required to prove induction step. We now use the induction
principle and prove many formulas, statements.
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Example 12 Provethat1+2+3+ ...... + nzn(n;l),nzl.
Solution: Let P(n) denote the formula 1 + 2 + 3 + ... .. +

e n(n+1)

, . n>1Inthisexample, ny=1.

Basis step: For n = 1, left hand side of above formula is 1while the
right sideis @ which aso is 1. Thus the formulais true for n =
1 and we have proved the basis step.

Induction step: We now need to establish the validity of the
formula P(k+1) whenever P(K) is true for k > 1. Let k > 1 be any
integer for which P(k) is true. Thus the statement 1 + 2 + 3 +

k= k(k+1)

. We now wishto prove 1 + 2 + 3 + ....... +

(k+1)((k+1)+1)

. We can write the right hand side of this as

(k+1)=

Thus 1+ 2 + 3 + ... +k+(k+1):@+(k+1). This upon

(k+D)(k+2)
2

straightforward simplification reduces to . This is

precisely what we need to establish. We conclude by the principle of
mathematical induction that P(n) istrue for al positive integers.
Example 13. Prove by the method of induction, that for all ne N,

123+234+345+...+n(n+1) (n+2) = ”(”“)(”:2)(“3) |

Solution:- The result P(n) to be proved is, that for all n €N

123+234+345+...+n(n+1) (n+2) = ”(”“)(”:2)(“3) |

Step.1: Forn=1, LH.S=123=6;
RH.S= J“2’3’4:6

Therefor LH.S=R.H.Sforn=1
Therefor P(1) istrue

Step.2: Let usassume that for somek € N, P(k) istrue.
Thatis, 1.2.3+234+345+.......... +k(k+1)
k(k+1)(k+2)(k+3)

(k+2)= /RTINS (1)
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Then to provethat P (k + 1) istrue,
That is, to prove that

123+234+345+.......... +R(k+1) (K+2)+(K+1) (k+2)
(k+3)= k(k+l)(k+2£)1(k+3)(k+4)
Here

LHS=[123+234+345+...... +kk+D(k+2)]+(k+1)
(k+2) (k+3)
_ k(k+1)(k+2)(k+3)
4
=(k+1) (k+2) (k+3) ($+1)
_ k(k+1)(k+2)(k+3)(k+4)
4

+ (k+1) (k +2) (k +3)...... [by (1)]

=R.H.S.
Therefor P (k + 1) istrue.

There for by the principal of mathematical induction, the result P (n)
istruefor al n O N, thatis, 1.2.3+234+345+............... +n

(n+1)(n+2)= ”(”+1>(”:2)(”+3),foran neN.

Example 14. Prove by the method of induction, that forall n € N,

35 57 79 (2n+1)(2n+3) 3(2n+3)
Solution:- theresult p (n) to be proved isthat for al neN
1. 1,1 1 n
35 57 79 (2n+1)(2n+3) 3(2n+3)
1
Step.l. Forn=1L.H.S= —
1 1

RHS= —— =~
3(2x1+3) 35

Therefor L.H.S=R.H.Sfor n=1there for P(1) istrue.

Step.2. Let usassume that for some ke N, P (k) istrue.

.1 1 1 1 Kk
Thatis, —+—+—+..... + = ... 1
35 57 79 (2k+1)(2k+3) 3(2k+3) @)
Then to prove that P (k+2) istrue,

That isto prove that
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1 1 1 1 1 k+1

35 57 79 7 (2k11)(2k+3) (k13)(2k15) 3(2kr5)

1
2k +3)(2k+5)

35 57 79 Tk D(2k+3)| |

............................. [by (1)]

=~
=

T3(2k13)  (k+3)(2k+5)
:L[E+ 1 ]: 1 2k®+5k+3
2k+3(3 2k+5) 2k+3 3(2k+5)
~ (k+1)(2k+3)  k+1
3(2k+3)(2k+5) 3(2k+5)

=RH.S

Therefor P (k + 1) istrue.
There for by the principle of mathematical induction, the result P(n)
istrueforal n € N.

1 1 1 1 n
Thatis — 4+ —+—+..... = , for dl
' 3.5+5.7+7.9Jr +(2n+1)(2n+3) 3(2n+3) o
ne N.
Example 15.
1 2 3 n n(n+1)

345 456 567 7 (n+2)(n+2)(n+3) 6(n+3)(n+4)

Solution:- The result P (n) to be proved isthat for all n € N,

1+2+3++ n _n(n+1)
345 456 567 (n+2)(n+2)(n+3) 6(n+3)(n+4)

1
Step.1.forn=1,LHS= —;
@ 3.4.5

10141 1
6(1.3)(14) 345
Therefor L.H.S=R.H.Sfor n=1there for P(1) istrue.

RH.S==

Step.2. Let usassumethat for somek € N, P (k) istrue,
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Thatis
1 2 3 k k(k+1)

345 T 45.6 i 5.6.7 o (k+2)(k+3)(k+4) 6(k+3)(k+4)

Thento provethat P (k + 1) istrue,
That isto prove that

1 2 K k _ (k+D(k+2)

345 456 (k+2)(kt13)(kr4) (k+3)(ki4)(kt5 6(ks4)ki5)

Here L.H.S

1 1 k

) . k+1
345 456 (k+2)(k+3)(k+4)

(k+3)(k+4)(k+5)

_ k(k+13) N k+1
6(k+3)(k+4) (k+3)(k+4)(k+5)
k41 (k.1
_(k+3)(k+4)[2+k+5]
(k-+2)(k®+ 5k +6)
6(k +3)(k+4)(k+5)
 (k+1)(k+2)(k+3)  (k+1)(k+2)
~ 6(k+3)(k+4)(k+5) 6(k+4)(k+5)
=RH.S

Therefor P (k + 1) istrue.

There for by the principle of mathematical induction, the result P(n)
istrueforal n e N
Thatis,

1 2 3 n ~n(n+1)

e [OY ()]

345 456 567 7 (ntr2)(n+2)(n+3) 6(nt3)(n+d)
Foral n e N.

Example 15. Show that if P(n) givenby 1.6 + 29+ 3.12 +.......... +
n(3n + 3) =n* + 3n"+2n+3istruefor n =k thenitistruefor n =k +
1. IsP(n) truefor all n € N?
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Solution:- Let us assume that P(k) istrue.
Then1.6+29+312+............. + k(3k + 3)
=k*+3k*+2k+3

Now we have to prove P(k + 1) istrue.

There for to prove that

16+29+312+.............. +k(3k +3) + (k + 1)(3k + 6) = (k + 1)*
+3(k + 1%+ 2(k + 1) + 3

LHS=[16+29+312+......... +Kk(3k + 3)] + (k + 1)(3k + 6)
=(k®+3k*+2k+3) +3k*+9k + 6
=(k*+3k*+3k+1)+3k"+2k+1)+2(k+1)+3

= (k +1)%+3(k + 1)*+2(k + 1) + 3=R.H.S

Henceif P (n) istruefor n=k, itisalsotrueforn=k + 1.
Whenn=1, n*+3n°+2n+3=1+3+2+3=9

Whichisnot thesameasL.H.S=1(6) = 6.

Therefor P (n) isnot truefor n=1.

Hence P (n) isnot true for all n eN.

Example 16 Prove that a set containing n elements, n > 1, has 2"
subsets.

Solution : We will prove the result by induction on the size of the
set, n. Let P(n) denotes the statement : Number of subsets of a set

containing n elementsis 2". In this problem, ny = 1.

Basis step : Since the only subsets of asingleton set x ={ x } are &
and { %}, the formula is true for n = 1. Induction step: Suppose
P(k), k> 1, istrue, i.e. any set with k elements has 2¥ subsets, k > 1.
Let X = {X, X, eeereems %1} - Any subset S of X can be classified into
two types : (A) x,1€S; (B) X 12 S We will count these subsets
separately. If Sisany subset of X of type (A) thenS' =S —{ x4} IS
a subset of X — { x4} and vice-a-versa. Therefore number of
subsets S of the set X of type (A) is same as number of subsets of a
set X — {x1}. Since there are k elements in X—{ %1}, by
induction there are 2¢ subsets of X —{ x..;}. Thus there are 2
subsets of X of type (A). Any subset S of the set X of type (B) isa
subset of X — { x,1} and vice-a-versa. By induction it follows that
there are exactly 2 subsets of X of type (B). Thus number of

subsets of the set X containing k + 1 elementsis 2K + 2 = 2k*1, The
result now follows by the method of induction.
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Example 17 Provethat 1+2" <3", n>2.

Solution : Let P(n) : 1+2" <3",n>2. Inthiscase, ny=2.
Basisstep : Clearly, 1+22 =5<3% =9, it follows that P(2) istrue.

Induction step: Suppose P(k), k > 2 is true. Thus we have
1+2€ <3 k> 2.

Now1+ 2K+ =14 2x 2% = 2(1+ 2K) 1< 2(3%) -1, by induction. Clearly,
2(3)-1=3+ (3 -1 <3*+3=3*1. Thus Pk + 1) is true. By
induction, the result is true for all integers greater than 1.

Example 18 (De Morgan's Laws ) Let A, A, ......, A, be any n sets.
Prove that

1. (m A,]: GE,nzl.
i=1 i=1

2 (GAJ:HK,ML
i=1 i=1

Solution : Let P(n) be the statement that equality holdsin(1) for any
n sets.

Basisstep : The statement istruefor n= 1.

Induction step : Suppose P(k) is true. Thus we have

The left-hand side of P(k + 1) is

k+1
(iglA}AmAzﬂ ------- NAN Aq1=AN A

where A=ANAN.... NA.. By De Morgan's laws for two sets,
ANA 1 =AU A7 By induction,
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Hence P(k + 1) istrue. The result now follow by induction.
Example 19 Provethat 3 | (n®-n) for any natural number n.

Solution : Let P(n) denote the statement that 3 | (n°—n) for any
natural number n.

Basis step : Clearly, (13~1) = Oisdivisible by 3, it follows that P(1)
istrue.

Induction step : Suppose 3 | (k3-k), k> 1, i.e( k3-k) = 3, for
some integer t. Since

(k+2)° = (k+) =k3+ 3P +3k+1-k-1=(K~k)+  3(k*+k). By
induction, the first term on the right is divisible by 3 and hence it

follows that the right side is divisible by 3. We conclude the result
by the principle of induction.

25LET USSUM UP

We have learned logical connectives such as negation,
conjunction, digunction. We also have learned about quantifiers,
conditional and bi-conditional statement. Finally we have learned a
method of proof the principle of mathematical induction.

2.6 UNIT END EXERCISE

Prove the exercise number 1 to 8 by the principle of induction.

2 n(n+1)(2n+1)

1. <=
i=1 6
5 i3_(n(n+1)J2
i=1 2
n n_
3 Za.r'=a.r 1,r¢1
i=1 r-1
n n
4 > 2i=n(n+1),> (2i-1)=n?

1 i=1

(4i-3) = (2n+1)(n-1)

(62}
.M:

I
=
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6. Prove that sum of first n terms of an arithmetic progression a, a +
d,a+
n[2a+(n-1)d]

2d, ........ + [a(n— 1)d] isgiven by 5
1 1 1 1 n
{. —+— ... + =—.
12 23 34 n(n+l) n+1
8. 1+£+i+ ....... +1=2—n+2.
2 22 22 2" on

9. Find a formula for 12 +32+5% +.......+(2n-1)? and prove it by
induction.

1\" n
10. Prove that 1+E zl+§.

11. Provethat n<2", n>1.

12. Let AL A,........, A, and B be any sets. Prove by induction the
following distributive properties

) (_F_qlAJUBz_i(A UB),n>1.

(b) (-QA‘JHB:-Q(A‘ NB),n>1,

13. If A and B are two sguare matrices of order n such that AB
BA. Provethat (AB)" = A"B", n>1..

14. (@) Prove that product of any two consecutive integers is
divisible by 2.

(b) Prove that product of any three consecutive integers is
divisible by 6.
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3

RELATIONSAND IT'SPROPERTIES

Unit Structure

3.0
31
3.2

3.3

34

3.5

3.6
3.7
3.8

Objectives

Introduction

Product sets and partitions

3.2.1 Product sets

3.2.2 Partitions

Relations and diagraphs

3.3.1 Definition and examples of relation
3.3.2 Setsrelated to arelation
3.3.3 Thematrix of arelation
3.3.4 Thediagraph of arelation
Paths in relations and diagraphs

3.4.1 Paths in a relation ‘R’ can be used to define new
relations

3.4.2 Matrix version

Properties of relations

3.5.1 Reflexive and Irreflexive relations

3.5.2 Symmetric, Asymmetric and Antisymmetric relations
3.5.3 Trangtiverelations

Let ussum up

References for further reading

Unit end exercise

3.00BJECTIVES:

After going through this chapter you will be ableto :

Understand the concept and definition of product and
partition of a set.

Understand the different representation of a relation (set
theoretical, pictorial and matrix representation).

Understand the definition of a path in a relation and able to
find paths of different length.

Understand the different properties of binary relation.
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3.1 INTRODUCTION:

In day today life we deal with relationships such as an
employee and employee number, element and set, a person and his
telephone number etc. In mathematics it’s looked in more abstract
sense such as division of integers, order property of Real numbers
and so on. In computer science, a computer programme and variable,
computer language and valid statement and so on Relations are
useful in computer databases, networking etc.

3.2 PRODUCT SETSAND PARTITIONS:

3.2.1 Product sets
Definition:

Let A and B be two non empty sets. The product set or
Cartesian product of A and B, (denoted by AxB) is the set of all
ordered pairs (a, b) where ac A and beB.

Thus, AxB={(a,b)/acA and beB}

[ Note: an order pair (a, b) is the ordered collection that has ‘a and
‘b in prescribed order, ‘a in first position and ‘b’ in second
position.]

Examples:

(1) Let A={1, 2, 3} and B={x,y}
then AxB={(1x),(Ly),(2x),(2y),(3x),(3Y)}
Similarly, BxA ={(x,2),(y,1), (x,2), (¥, 2), (x,3), (¥, 3)}

(2) Let A be the set of all 2 divisionsin X" class in some school and
B bethe set of all 3 courses available.

e A={X,Y}, B={C", Java VB
then
Asz{(X, C™), (X, Java), (X, VB)(Y, C™), (Y, Java), (Y,VB)}

so there are total 6 categories possible.

Remark:
(1) AxB and B xA may or mayn't be equal.
(2) If A and B arefinite setsthen |[AxB|=|A|.[B|=BxA|
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(3) An ordered pair (,by) and (ay,b,) are equa iff a; =a, and

b]_:bz.

(4) The idea of Cartesian product of two sets can be extended to

n

number of sets Ag, A,,..., A,, (it's denoted by

AixAsx..x A,) and it's defined as, AjxAs x..x Ay =

{(al, as, ..., an)/aleAl,az EAz...& an EAn}

[ (3, ap,...,a,) isanordered ‘n’ -tuple]

3.2.2 Partitions
Definition:

A patition of a nonempty set A is a collection

p={A1, Ay, ... A, }of nonempty subsets of A such that
(D) AJUALUAZU..UA,=A
(2 AiNAj=0 (1<i<j<n)
Aq, Ay, As,... A, arecalled as blocks or cells of the partition.

Example:
(1) A={1, 2 3 4, 5

(@ Let Aj={1}, A,={2,3} and Az={4,5}
Thenwe have, AJUA,UA3;=A
&ANA,=F, AiNA3=0, A,NAz=J
~.P={A1, Ay, A3} isapartitionof ‘A’

(Let A=(L 2}, Ap={3}, Ag=(4} and A,=5)

then P={A1, A,, A3, Ay}isapartitionof A.

@LetAy={12}, Ay={23}, Ag={45)]
then P={A;, A,, Ag}isnot apartition of A

AlﬂAZ ¢/®

(d) Let A=7Z= setof al ‘integers
E = set of all even integers and
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O = set of all odd integers
Wehave, ENO=@ and EUO=A
~.P={E, O}isapartition of A.
Check your progress
1. Listall partition of A={a, b, dj.
2. Let A={ab,cdef,ghjandA;={a},A,={b,c},Az={def},
Ag={g,hjand A5 ={f.g} Ag={ab,c]
Which of the following are partition of A.

(@ {A1, Az, Ag) (D) {Ag, Ag, Ag, Ayl () {Az, Ay, As, Ag)

(d) {As, Ag, Agj
3. AxB=BxA if (a)Aisfinite (b) A=B
(c) Bisfinite
4. If A={x,y, z}, B={1 2, 3} and C={a, b} write down the set
AxBxC.

3.3RELATIONSAND DIAGRAPHS:

3.3.1 Definition and examples of Relation
Definition:

Let A and B be two non empty sets A relation R from A to B
isasubset of AxB.

If (X, y) e Rthen we write xRy and If (X, y) £ R then we
write xRy .

Examples:
(DLet A={1 2 3} & B={x,y, z} then R={(1 x),(1, ¥).(2 2)}is
relation from A to B.

Note: If A=B then instead of saying arelation from A to B we will
say arelationon A.

(2)Let A=B={1, 2, 3 4}, Let R be arelation on A defined as xRy
iff x>vy.
L R= {(2, 1,(31,32,421,(4,2),(4, 3)}
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(3) Let A=B=R= The set of Rea numbers.
Let R bearelation on A such that

XRy iff x%+y?=25

N

(A
N

v

Fig. 3.1

~R= {(x, y)/x2 +y2 = 25}

= The set of al points on the circle centre a origin with
radius ‘5’

Wecansee, (34) eR (. 3%+4%=25)
but (3,3) g R (.- 3°+3% =18+ 25)

(4 Let A=N, Let ‘R’ be arelation on ‘A’ defined as xRy iff ‘X’
divides‘y’. R={(12),(2,4),(5,10), (2 6),....

Wehavel R2but 2 R 1.

3.3.2 Setsrelated to arelation
Let ‘R’ berelation from A to B.

Two important sets related to R are the Domain of ‘R’
[denoted by Dom (R)] and The Range of R [denote by Ran (R)].

We have, Dom (R)= {x/(x,y)eR}cA i.e. Dom (R) is a
subset of ‘A’ containing first element of the pair (x, y) which
belongsto ‘R’. Similarly, Ran (R)= {y/(x,y)e R} = B.

For Example:
()Let A={1 2 3} and B={x,y} R={(L x),(3 y)}

Dom (R)= {1, 3} c A and Ran (R)= {x,y} =B

(2) Let A and B be only two setsand R = AxB.
Then Dom (R) = A and Ran (R) =B
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Check your progress

1. Write down the elements of R form A={0,123} to
B={1,23}, defined as (a,b) eR iff
@a=b (b) a+ bisan even number
(c)a+bisamultipleof ‘3" (d) a>b

2. Find the domain and Range of the relations defined in Q.1.

3.3.3 Thematrix of a Relation

A relation between two finite sets can be represented by a
Boolean matrix (a matrix which is having entriesas ‘0’ or ‘1’)

Let ‘R’ be arelation from A ={ay, ay,....ay,} t0 B={by,by,...b,}.

(Here the elements of A and B are listed in a particular order). Then
relation ‘R’ can be represented by the m x n matrix Mg =[mijlqxn,

which is defined as,

1if (a,bj)eR
I=Y0if (a,bj)eR

The matrix Mg is called as the matrix of a Relation ‘R’
Examples:
(1) Let A={1, 2, 3} and B={x,y} and
R={(%x),(2,x),(3y), L y), (3 x)}

11
~Mg=[1 0

1 1 3x2

(2) Let A=B={1, 2 3 4}
Let ‘R’ bearelation on ‘A’ defined asxRy iff x<y.
~R={(11),(12),(13),(14).(22),(293,(24),33,3%,(44)
11 1

1
0

Mg =
R70o
0

O O -
QO A A

1
1
1] 4x4

Note: Converse process is also possible i.e. given a matrix with
enteries‘0’ or ‘1’ we can write ‘R’ related to that matrix.
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3.3.4 The Diagraph of a Relation

Just we saw that arelation on finite set ‘A’ can be represented
by a binary matrix. Similarly there is another way of representing a
relation using a pictoria representation. Pictorial representation of
‘R’ is as follows, Draw a small circle for each element of A and
label the circle with the corresponding elements of A, (these circles

are caled as vertices) draw an arrow from vertex a to g iff

a Ra;. (these arrows are called as edges)

The resulting pictorial representation is called as Directed
graph or diagraph of ‘R’.

For example:
(1) Let A=B={12,34} and R={(11),(1,2),(2,3),(34).(24).(3D}

Fig. 3.2

Note:

(1) An edge of the form (a, a) is represented using an arc from the
vertex ‘a back to it self. Such an edgeis called aloop.

(2) Conversely diagraph can be used to find underlying relation
represented by it.

(3) There are two important definitions arising from the diagraph.

(i) In-degreeof = no. of arrows
avertex coming towardsthat vertex  and

(i) Out-degree of no. of arrows
avertex going away from that vertex
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For example (1) for below diagraph

R
A

Fig. 3.3

In-degree 2 1 1 1 1

Out-degree

Check your progress

1. Write down the matrix Mgand draw the diagraph for following
relations.

(@ A=B={1,234}, Rissuchthat xRy iff x|y.
(b) A=B={1,234}, ‘R issuchthat xRy iff x+y<5
(0 A=B={1,246}, ‘R is such that xRy iff x+y is a

multiple of ‘2

2. Write down In-degree and out-degree for each of the verticesin
example (1).

3. Let A=R, Give a description of the relation ‘R’ specified by

the shaded region shown below
A

©,2)

(-2,0) (20

(0! '2)

Fig.34
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3. 4PATHSIN RELATIONS and DIAGRAPHS:

Let A beagivensetand let ‘R’ bearelationon‘A’. A path of
length m in R from ‘@ to ‘b is a finite sequence.
Tia=Xg, X1, X2, X3,., Xm_1, Xm =D, starting from ‘a and ending
to ‘b’ such that aRXl, X1 RXZ’ X9 RX3, < Xm=1 R b.

Note: Length of a path is nothing but the number of arrows involved
in apath.

For example:
(1) Consider the following diagraph,

)
(3

Fig. 3.5

ny:1 2,4 isapath of length ‘2’
n5:1,2,4,1 isapath of length ‘3
n3:4,4,3 isapath of length ‘2’
n4:4,4 isapath of length ‘1’

Note: a path like n,& n, are called as cycles, a cycle is a path
which is having same starting and ending vertex.

3.4.1 Pathsin arelation ‘R’ can be used to define new relations.

From above example, It can be seen that paths of length 1 can
be identified with the elements of R and vice versa. So ‘R’ can be

replaced by R' where ‘1’ stands for set of all order pairs (x, y) for
which there exist a path of length 1 from x to y. on similar lines now

we can define R?, R3,...,R" (neN)
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R? ={(x, y)/if apathof length'2'from'x'to"'y"}.
R™ ={(x, y)/if apathof length'n'from'x'to"y"}.

Now we may define R* as,

R™ ={(x, y)/if somepathfrom'x'to'y"}.

o0 .
ie. [R°=UR
i=1

For example:
(1) Consider the following diagraph.

Fig. 3.6
So, R'={(2,2),(2.1),(2.4),(3 2), (3. 4), (1 4, (1L 3)}

Now for R?, we haveto find all Paths of length ‘2’
m:2,22  71:221  m3:2,24
n4:3,2,2 n5:3,2,4 ng:3,2,1
n7:1,3,2 ng:13,4 ng:2,13
e RZ={(22)(21,(24),(32,(34,31,(23,12,L4)

similarly we can find R, R* and so on.
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Fig. 3.7

(2) Consider the diagraph,

Then, R ={(a,b), (b,a), (b, c), (c, d)}
R*={(a a),(a,0), (b, b), (b, d)}
R3={(ab),(a d), (b a), (b,c)!

R* ={(a,a),(ab),(a ), (ad),(ba), (b b) (b c), (b d)(cd)

Note: Since ‘n’ is finite the process of finding RY, R? RS,... will
stop after somefinite‘n’.

In fact we can prove that, R* =R'UR?UR%U....UR",
where ‘n’ is number of elements in the given set ‘A’.

3.4.2 Matrix version
If |R| is large, it would be tedious to compute R™, or even

R2,R3 etc. from the set representation of R so we have following

matrix version of above concepts.
First we will see some different operations defined on Boolean

matrices.
Let A=[a;| and B=| by | betwo m x n Boolean matrices.

(1) we define Av B =C=[Cj], thejoin of A and B by,

1 |fa” =1orbij:1
170 if a;& by bothare0
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(2) We define AAB=E=[g;], themeet of A and B

1 if aij=1&bij=1
170 if 4 =0orb; =0

3 Let A=[a;] andB :[bij]pxn be two Boolean matrices.

mxp

Then Boolean product of A and B, (denoted by A ©B) is the
mxn Boolean matrix C=[C;;] defined by

1 if ax=1andb =1for somek, 1<k<p

ij =
0 otherwise

1 00 1 0
foreg:Let A=|0 1 O & B=l1 1
1 10 33 0 1 30
1 0
~JAGB=1 1
11 3x2
Note:
_ail a2 ... aip_
C C ... C
ar1 azxy ... azp bll b12 bIl bln 11 12 ]_n
. : : : bn: .
: o 2j _| C”
a1 a2 8ip . :
: : b b -+ | bpi ’ :
' ’ pl “p2 pJ pn
a1 qm2 - amp-mxp PXN 1 Cm1 Cm2 Cmn mxn

If any corresponding
pair of entries
A2 |«—— Dy > are both equal

: : tol,thencijzl;

otherwisec.' =0
1]
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We can prove that M_2 =Mr OMg I.e. matrix related with

R? is nothing but the Boolean product of Mgwith Mgsimilarly.
Mon =MR OMR ©...OMg (‘'n’ times)

For example

Fig. 3.8
aswesaw, R ={(2,1),(2,2),(24),(32,(34),(31,12),(23, L4}

0101 0011
1111 1101
M 5= and Mg =
R 1101 0101
000 O0f,, 000 0],,
0 011 0 011
Now let’s compute, M @M—1101®1101
PUE MrROMR=15 1 0 11°0 1 0 1
0 00O 0 00O
0101
1111
= which is nothing but M _»
1101 R
0 00O

i.e. M z2 =MrOMg isverified.
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2

Notation: Mg ©Mp isdenoted by (Mg )

Similarly, Mg ©Mg..OMg =(Mg)]

'n'times

e M_n=(Mg)gy, n=2

o0 .
Now, we know that, R* = U R'
i=1
i.e. R =RIURZ2UR3UR*U...
we can check that If R and S ae two relations then
MRUS:MRVMS'
if we extend thisideawe have,

MRCO :MRl VMR2 VMR3VMR4V...

. 2
l.e. MROO :MRl V(MR)OV(MR)OV(MR)OV"'

thus, we got another way of calculating

Mr% M 3,..... ,MRn,...,MROo and which in turn gives the sets

RZR3 .. R". .. R”

Check your progress
1. Consider the following diagraph and answer following

o)
O==0

Fig. 3.9
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(@) List all paths of length ‘2’
(b) List of al paths of length ‘2" starting from *3’
(c) List all cycles
(d) All cycles starting at ‘1’
2. For example (1) find 'V'Rz and MR3 ?

3. Provethat if Rand Saretwo relationsthen Mg js=Mgr v Mg

3.5PROPERTIES OF RELATIONS:

3.5.1 Reflexive and Irreflexive Relations

A relation on set ‘A’ is reflexive if (x,x)eR~xeA
[or xRx + x € A]

A relation on set ‘A’ is irreflexive if  (x,x)gR~xeA
[or xRX ~xeA]

For e.g. (1) Let A={12 3 4} with RelationsR,S,T on A.
If R={(11),12),(22),(33,(44),(42) | then ‘R isreflexive.
If S={(11),(21,(33),(4,3),(4,4)} then ‘'S is not reflexive.
(-2R2) and dso ‘'S is not irreflexive. (- (33)eRor(2,2) eR).
if T={(1L2),(2,3),(31)} then T isirreflexive.

Note:

(1) A={(x,x)/x eA}iscalled as an equality relation on ‘A’.
(2) ‘R isreflexiveiff AcR.

(3) ‘R isirreflexiveiff ANR=O

(4 If R=dg, an empty relation then ‘R’ is not reflexive since
(x, X) ¢ R~ x e A. However, Risirreflexive.

(5) Let ‘R’ be areflexive relation on set ‘A’ then matrix of relation
Mg must have diagonal elements as 1.

(6) If ‘R’ is irreflexive then Mg must have diagonal elements as
zero’'s.
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3.5.2 Symmetric, Asymmetric and Antisymmetric relations

(1) A relation on set ‘A’ is symmetric if whenever
(3, b)eR, then (b, a)eR.

(2) A relation on set ‘A’ is asymmetric if whenever
(& b)eR, then (b, a)¢R.

(3 A relation on set A is antisymmetric if whenever
(a b)eR, & (b, @) R thena=Dh.

For Examples.

(1) Let A=N, ‘R’ bearelation on ‘A’ such that xRy iff ‘x’ divides
lyi'

(@) If xRy (i.e. ‘X’ divides'y’)

then yRx or y R x

(-~ 'y' may or mayn't divide‘x’)

For eg: 2R8 (as2|8) but 8 R 2(-.-8x2)
- R isn't asymmetric

(b) If a=b=2 then aRb aswell asbRa
-.R isnot asymmetric

(c) If ‘@ and ‘b’ are such that a/b and b/a
Al/bandb/agivesa=Db
. Risantisymmetric

(2) Let A = set of al linesin axy-plane.

(@ If ¥ and marein A such that /R m then
MR/ (/Rm=/||m=m||/=mRY)
. Rissymmetric

(b) Risnot asymmetricas fRm=mR /¢

(c) R is not antisymmetric as we can have 2 distinct lines | | to each
other butn’'t equal.
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(3) Let A=N, ‘R’ isarelation such that x Ry iff x <y then R is not
symmetric but R isasymmetric. (- xRy =x<y
=Yy £X

=y R X)

Notes:
1) The matrix Mgof a symmetric relation satisfies the property that

t
Mg :MR i.e if mij =1 then mji =1andif mij =0 then mji =0

2) The matrix Mgof an asymmetric relation satisfies the property if
m;; =1 then m;; =0 and m; =0 ~i (i.e. diagonal elements are
Zero)

3) Redation ‘R’ is antisymmetric meansx Ry andy R X = x=y
contrapositive of this statement is, if x =y = xRy or yRx
i.e. My of antisymmetric relation satisfied the property that if
I # ], then Mij =0 or Mji =0
Similarly for diagraphs we have,

4) The diagraph of symmetric relation has the property that if there
an edge fromi to j, then thereis an edge fromj toi.

5) If Risanasymmetric relation, then if there an edge fromi toj so
there can’t be any edge from j to i and there can’t be any cycle of
length ‘1.

6) If ‘R’ isan antisymmetric relation, then for different i and j there
can not be an edge from vertex ‘i’ to vertex ‘)’ and an edge from
vertex ‘j’ tovertex ‘i’. (wecan't say anythingif i =j)

3.5.3 Transitive Relations

A relation ‘R’ on set ‘A’ is said to be trangitive if (X, y)eR
and(y,z) eR then (x,2) eR.

[1eif xRyand yRz= xRz]

For Example:

(1) Let A={1,2,3/4} and letR={(1,1),(1,2),(2 2),(24),(14)} and
S={(32,(21),(14),(4,2),(2}then we can check ‘R is
trangitivebut ‘S isnot. [ (3,2) & (2,) S but (3,1) ¢S]
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(2) Let A=N & Let 'R'bearelation <. Then, if xRy and yRz i.e.
X<y & y<z

Wehave x<y<z= xRz
. Ristransitive.

Notes:

(1) A matrix Mgof relation ‘R has the property, if
mijzl& mjk=1

Then Mik =1
(2) from above point (1) we can see that if (MR)é = mrthen R is

transitive but converseis not true.

(3) If there is a path of length ‘2" from ‘a to ‘c’ then there has to be
apath of length ‘1’ from‘a to ‘c’ inorder to have ‘R’ transitive.

i.e if (3 c) eR?then (a,c)eR

()
i.e. R2cR @ 9

~R istransitiveiff R2 c R Fig. 3.11

(4) more generally we have,

‘R istransitiveiff R"TcR  ~ n>1

Check your progress

1. Determine whether the following relation is reflexive,
irreflexive, symmetric, asymmetric, antisymmetric or transitive.

Let A={1234)

@ Ry ={D,(22)

(b) R ={(1.1),(23).(32).(2.2)

(©) R3={(2.3,(32,(22.(34).(43,(33),(4 4}
(d) Ry={(23).(32),(14.(4,2),(%2)}
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2. Determine whether the relation ‘R’ on the set A ={1, 2, 3} whose
matrix Mg and Diagraph are given is reflexive, irreflexive,
symmetric, asymmetric, antisymmertic or transitive.

010
@101
010
(b)
Fig. 3.12
1 00
(0 |0 11
1 01
(d)
Fig. 3.13

3.6 LET USSUM UP

We started the definition of product sets which is useful in
defining relation from one set to other. Then we saw different ways
of representing a relation. Which is useful in understanding the
concepts in more better way. Then we saw very important definition
of a path in arelation and then concepts of paths of different length
and then finally matrix version of it. At the end we saw different
properties of arelation which is useful in coming chapters.
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3.7 REFERENCES FOR FURTHER READING:

(1) Discrete structures by B. Kolman HC Budloy, S Ross PHI Puvt.
Ltd.

(2) Discrete mathematics and its application, Keneth H. Rosen
TMG.

(3) Discrete structures by Liu.

3.8UNIT END EXERCISES:

1. Find R* for therelation ‘R’ whose diagraph is

Fig. 3.14
Q.2 Cadculate M 4 for arelation R={(1,2),(3,2),(1,4),(2,4)} on set

A={1234)

Q.3 Determine whether following relations are reflexive,
irreflexive, symmetric, asymmetric, antisymmetric or transitive.

@ A=7Z, xRy iff X +y isan even number.
(b) A=R, xRy iff  x%+y?=9
(c) A=N, xRy iff X<y
(d) A=7, xRy iff (x-y)<3
Q.4 Definearelationon A ={1,2,3 4} that is
(a) Reflexive butn’t symmetric
(b) Trangitive butn’t reflexive

(c) Antisymmetric and reflexive
(d) irreflexive and transitive

Q.5 Provethat if ‘R’ is symmetric then R? isalso symmetric.

o%0 50 Qo o3
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EQUIVALENCE RELATION AND
CLOSURES

Unit Structure

4.0 Objectives
4.1 Introduction
4.2 Equivalence reations
4.2.1 Definition
4.2.2 Equivalence relation and partition
4.3 Operations on relations
4.4 Closures
4.4.1 Reflexive and Symmetric closures
4.4.2 Trangtive Closure
4.5 Composition
4.6 Computer representation of relations and diagraphs
4.7 Letussumup
4.8 Referencesfor further reading
4.9 Unit end exercises

4.0 OBJECTIVES:

After going through this chapter, students will be able to

e Understand the definition of an equivalence relation and able to
identify an equivalence relation

e Find the Partition produce by an equivalence relation and vice
versa.

e Understand different operations that can be performed on
different relations which is useful in finding the closures of a
relation.

e UseWarshall’salgorithm to find transitive closure.
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4.1 INTRODUCTION: :

We have already seen the concept of reflexive, symmetric and
trangitive etc. If arelation is not transitive then it doesn’t contain all
the pairs that can be linked so we want to make it transitive by
adding the remaining pairs with the property that resulting set is
smallest set containing given relation. Such a set is caled as
trangtive closure. Also we will see important concept of
composition of relations and computer representation of relation and

diagraph.

4.2 EQUIVALENCE RELATIONS

4.2.1 Definition :

Let ‘R’ bearelationon‘A’, ‘R’ issaid to be an equivalence relation
on A iff ‘R’ isreflexive, symmetric and transitive.

Examples:

QD LeA={123andR={(2 2), (1, 2), (2, 1), (1, 1), (3 3)} then
it's easy to check ‘R’ is an equivalence relation.

(2 Let A = Nand ‘R’ bearelationon ‘A’ such that XRyiff X+yis
an even number.

To check whether ‘R’ is an equivaence relation or not.
(a) Let xeA,

. X+ X=2X=even

© XRXVxeA

.. Risreflexive.

(b) Let X,ye Asuchthat XRy i.e. X+y=even i.e.X+y=2p, peN
Consider, y+X =X+y=2p = even
.. y+X isaso an even number.
. YyRX

. Rissymmetric.

(c) Let X,y,ze A suchthat XRy= X+y=2p, peN ------mmmmmmm- )
and yRz= y+2=2q, ¢eN-----mmmmmmmmm- 2)
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D+ = x+2y+z=2p+2q
W X+z=2p+2q-2y

" X+z=2(p+q-vy)

i.e. X+ z=even number

" XRzZz

.. Ristransitive.
and hence R is an equivaence relation.

(3 Let A =7 and ‘R’ be arelation on ‘A’ such that xR yiff * X’
divides'y’. We have 3/6 but 6 X 3.

i.e.3R6 but 6K 3.
.. 'R; isn’t symmetric,

.. 'R’ isn't an equivaence relation.
4.2.2 Equivalence Relation and Partition

Using an equivalence relation we can produce a partition and
viceversa. Let ‘R’ beagiven equivalencerelationon set ‘A’.

Let ac A
We define a set which isequal to {X/XRa, Xe Aliscalled as

anequivalenceclassof ‘d.i.e. [a = {X/XRa, XeA}.

For example,

(DLetA={123 4 andR={(1 1), (1, 2), (2 1), (2 3), (3, 2),
(2,2),4,4),(13),3E 1,3 3)}

Then, [1] = {x/XR1}={1,2,3}
[21=1{1,2, 3} and [4] = {4}

Theorem :-

Let ‘R be an equivalence relation on ‘A’. Then we have
following properties —

(i) A= U [a]
acA

(if) Any two equivalence classes are equal or digoint.
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Proof :-
() T.PT. A= U ]q]
acA
[a] = {X/XRa, Xe Alc A

Ula]c A (D)

acA

Now, let Xe A t.p.t. Xe U [a]
acA

" XeA .. XRX (. Risreflexive)
" Xe[X]c U [a]
acA

. Xe U [a] )

acA

By (1) and (2), A = U [q]
acA

(ii)Leta be A, tpt.[al N[b] = g or[a] =[b]
If [a] and [b] are digoint then done. So let’s consider
[a] N[ob] =@
Let wela]N[b]
= welal& w e[b]
=wRaad wRb

=aRw and wRb ("." Rissymmetric)

= ae[b] (by definition)

=[al c [b] (." ae[b] .. aR b and hence every element of
[a] isrelated to b)

Similarly, we can prove, [b] c [a]

< [a] = [b]

.". Two equivalence classes are either digoint or equa. So,
from above theorem we can say p={[a]/acA} form a

Partition of set A.
Note : Above pisdenoted as A/R.
Example —
(D LetA={1,234 andR={(1,1), (1,3), (3,1), (2,2, (4,4)}
[1] ={1,3},[2] ={2}, [4] = {4}

Sop={[1], [2], [4]} isaPartition of ‘A’.
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We can reverse the above Process, i.e. given a Partition we

can produce an equivalence relation on a given set. Let ‘A’ be a
given set and let p be a partition of A. definearelationon set ‘A’ as,
XRyiff *x’ and 'y’ belongs to same block or cell of the given

partition.

T.P.T. Risan equivaence relation.

(@) If xeA,thenit'svery obvious X belongsto same block.
W XRX »XeA

. Risreflexive.

(b) If X,y e Asuchthat, XRy—= X& y belongsto same block
= y & X belongs to same block

=YRX
.. Rissymmetric.

(c) If X,y,w e A such that,
(XRy) & (yRw)=(Xandy belongs to same block)
and (y and w belongs to same lock)

— Xand w belongs to same block

= XRw
. Ristrandgtive
.". Risan equivaence relation.

For example,

(1) Let A ={1, 2, 3,4} and partition p = {{1}, {2, 3}, {4}}
SoR={(1,1),(2,2),(2,3),(3.2),(3,3), (4,4}

Check your progress

1.

LetA={1,23,4,56,7,8}andp= {{1},{2,3},{4},{5,6,7},{8}} be a
partition of A. Find corresponding equivalence relation.

Let A={12345} ad R={(11),(22),(12),(21),
(3.3),(4,4),(3,4),(43),(55)} be an equivalence relation on
‘A’. Find the corresponding Partition.
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4.3 OPERATIONS ON RELATIONS:

Let ‘R and ‘S be two relations from set ‘A’ to set ‘B’. We
have following operations defined on Relations.

(1) Complementary relation of ‘R’ (denoted as R)
R={(Xxy)/(Xy)eR]}
(2) Inverse of arelation ‘R’ (denoted as R™1)
R™={(xy)/(v.X) <R}
For example,
(1) Let A={1,23}and R={(2,2),(1,3),(2,3).(3,3)}
R={(1,1),(1,2),(21).(3.2),(3,2)} and

RL=((22),(31.(32).3.9)
(3) RUS={(Xy)/(xy)eR or (Xxy)eS|
(4) RNS={(xy)/(%y)eR & (xy)eS}

For example,
(1) Let A={1,2,34}and R={(1,2),(1,1),(24),(3,2)} and

5= ((2.2)(11).(2.2).(3.4)
S RUS={(11),(1.2).(2.2),(3,2).(3,4),(2.4)} and

RNS={(3,2),(1,1)}

Note:-
(1) MRUS:MRV MS
Mrns=MgrA Mg

_ T
Mg =(MR)

Mﬁ :MR

[ MR complement is a matrix obtained by replacing every ‘1’ by
‘0" and every ‘0" by ‘1’ ]
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Theorem : Suppose‘R’ and ‘S arerelationsfrom ‘A’ to ‘B’
(@ If RcS, then Rt st
(b) If Rc S, then ScR
© (RN =RINstand (RUS) =R IUS™
(d) RNS=RUS and RUS=RNS
(e) Risreflexiveiff Risirreflexive,
(f) Rissymmetriciff R=R™*
(9) Risantisymmetriciff RNR 1< A
(h) Risasymmetriciff RNR™ < @
(i) (RNS)*c R?NS?
Proof :
(@ Let (x,y)eR™

=(y,X)eRcS

= (X, y)eS_1

-R?*cs?

(b) Let (xy)eS

AR MW

(
= {(xy)/(y,X)eR and (y,X)eS|
{(xy)/(xy)eR™ and (xy)es™]
=R'Ns?

Similarly, other one.
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xX X
<
~
~
—_
o
=
R
Py
o
=
—_
X
<
~
R
O

(e), (), (g) and (h) are easy to check

(i) Let (X y)e(RﬁS.)2 means w such that X(RNS)w and
w(RNS)y
X(RNS)w = (X,w)e RNS and
w(RNS)y=(w,y)eRNS
i.e. (Xw)and(w,y)eR and (X,w)and (w,y)eS
:>(X,y)eR2 and ()Qy)eS2
:>(X,y)eR2ﬂS2
" (RNS)® < RNS?

Check your progress

1. Venfy MRUS:MRV Ms, MRﬂS:MR/\ Ms, MR_:L:(MR)T,

Mz = MR for relations.
R={(1, 1), (L 2), (2 4), (3,2} and S={(2 2), (2, 4), (1,2),
(4,3} onset A={1,2, 3,4}

2. Compute RUS, RNS, R, S, R™%, st for R={(1, 2), (2, 2), (3,
2)} and S={(1, 3), (2, 3), (3,3), (2, 1)} onset A = {1, 2, 3}.

4.4 CLOSURES

If ‘R is some relation on ‘A’ that doesn't have some
important relational properties like reflexivity, symmetry and
trangtivity. It's natural to ask a question like can we make it
reflexive, symmetric and transitive by adding some pair in it and we
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want to add as few new pairs as possible, so we want to find smallest
relation that contains given relation and posses the property we
desire. Such a smallest relation is called as closures of a given
relation.

4.4.1 Reflexive and Symmetric closures
Reflexive closure :-

Let ‘R’ be agiven relation on ‘A’. Then reflexive closure of
‘R’ is the smallest reflexive relation containing ‘R’ and it’s denoted

by R".

Note: (1) If Ritself isreflexivethen R" =R
(2) R" =RUA
For example,

(DLetA={123} andR={(1 1), (1,3), (2 3), (3 1}
S RT={(11),(1,3),(2,3),(3,1),(2,2),(3,3)}

Symmetric closure :-

Let ‘R’ be agiven relation on set ‘A’. Then symmetric closure of
‘R’ is the smallest symmetric relation containing ‘R’ and it's

denoted by R®.

Note: (1) If Ritself is symmetric then RS =R
(2) R®=RUR™

For example,
MIf A={x,y, 2 and R = {(x, x),(x, ¥).(z 2),(y. z)} then

RS ={(x,x),(%¥).(¥,X).(z.2),(y,2).(z Y)}

Check your progress

1
0
1

o = O

1. Let‘R beareation whose matrix is

o - O O
o O O B

01
Find the reflexive and symmetric closures of ‘R’.

4x4
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2. Let‘R’ bearelation whose diagraphis

Fig. 4.1
Find the reflexive and symmetric closures of ‘R’.

4.4.2 Transitive Closure

Definition : Let ‘R’ be ardation on ‘A’. The transitive closure of
‘R’ is the smallest transitive relation that contains ‘R’. It's denoted

by RT.

As compare to reflexive and symmetric closures it’s little bit
difficult to find transitive closure because we don’t have a formula
for it but we have following results and an algorithm for finding the
transitive closure.

Result :-

(1) Let ‘R bearelationon A. Then R* istransitive closure of ‘R’.

For example,
(DLet A={1 23, 4 and R ={(1, 1), (L 2), (2, 3), (3, 4)} we
know that if, JA| = m, then R* =R'U R?U....UR™.

©

Fig. 4.2
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T Al=4

. R® =RWURAUR3YR?
R'={(1,1),(1,2).(2.3).(3,4)

R2

(1,2,(1,3),(11),2 4)
R3={(1,1),(12),(14),(1,3)} and
{

R4

(1,2),(1,2),(1,49), (1, 3)}
. R® = {(1, 1),(1,2),(1,3),(1,4),(2,49,(2,3), (3, 4)}
". Transitive Closure= R' = R®

The above graphical method is impractica for large sets and
relations and it is not systematic and also It would be more time
consuming and costly for large set.

But we have a more efficient algorithm for computing
trangitive closure called as *Warshall’ s Algorithm’.

Warshall’s Algorithm :-

Let ‘R’ be a relaion on a set A={a,ap,....a,}. If
X, X9, X3,...., %, 1S @ Path in R, then any vertices other than
X & %y, arecaled interior vertices of the Path. Now, for 1<k <n,
we define a Boolean matrix W asfollows. W, hasa‘l’ in position
(i,j) iff thereisapath from &; to a; in'R’ whose interior vertices, if
any, come from the set {&,ay,.....,a } .

So, it followsthat W, hasa ‘1’ in position (i, j) iff some Path
in ‘R connects & witha;, i.e. W,= Mgo. If we define W, to be
my, , then we will have a sequence Wy, Wy, ..., W, =Mpgq,. Now, we
will see how to compute matrix W, from the previous matrix W_;
this procedureis called as ‘Warshall’ s Algorithm’.

Step—l LetW0=MR.

Step -1l Suppose we have calculated W, _;, now to calculate W, .
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Step— 111 List the locations py, p,,... in column ‘k’” of W,_;, where
the entry is ‘1’, and the locations q,d,,... in row k of
W1, Wheretheentry is‘1'.

Step—1V Put I'sin al the positions (pi,qj) of Wy (if they are not
aready there.)

For example,

DLet A={1 2 3 4 and R = {(1, 1), (1, 2), (2, 3), (3, 4)} as
earlier.

Now, we will use Warshall’s Algorithm to find R™ .

0
0

(1) Wo=Mg = 1

o O O B+
o O O B+
o O+~ O

0] 4x4

(2) To computer W, consider 1% column and 1% row of W, where
1'sare present.

1100 Column Row
0010 1 1
W]_: 2
0 001
0 00O So fill the positions (1, 1) and (1, 2) by

1'sif not present already.

(3) To compute W, consider 11™ column and 11" row of W;
where 1's are present.

Column Row
1 3

Sofill (1,3) by ‘1",

o O O BB
o O +— O
o »r O O

(4) To compute W3, consider 111" column and 111" row of W,
where 1's are present.
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1111 Column Row
w.o|0 011 1 4
37100 0 1 2

0000 Sofill (1, 4) and (2, 4) by 1's.

(5) To compute W,,, consider 1V™ column and IV" row of Wy
where 1's are present.

. Column Row

c e Wy =W3=MRy 1 No
2 I's
3

S0, N0 new entries.
SO RT=RY={(1,1),(1,2,(1,3), (L 4),(23),(2.4,3,4))

Note:
(1) Warshall’ s Algorithm gives another method to calculate R™ .

(2) Warshall’ s Algorithm relatively faster then other methods. (in
the sense of time taken)

Check your progress

1. LetA={1, 2, 3 4} and matrix of Relation ‘R; is,

1 010
0100
M R = .
0 010
1 000
Find R®using (a) Warshall’s Algorithm
(b) Diagraph

2. LetA={X,vV,z w} and matrix of Relation ‘R’ is,

MR=

= B O O
o O - B
o +»r O O

Compute W;, W,, W5 asin Warshall’s algorithm.
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4.5 COMPOSITION :

Let A, B, Chbegivensets. Let ‘R’ be arelation from A to B
and ‘T’ be a relation from ‘B’ to ‘C’ then we can define a new
relation from ‘A’ to ‘C caled as composition of ‘R and ‘T’
[denoted by (TOR)]

Fig. 4.3

Definition : Let XxeA andy e c, then X(TOR)y means there exist
w e B suchthat (XRw) and (w T y).
For example,
(1) LetA={1,2, 3 4} and
R={(1,1),(23),(1,4}andT=(2 2), (2, 3), (3 4}
(2,3)e R and (3,4)e T = (2,4)e TOR
.. TOR={(2, 4)}

In terms of Matrices,
If Mg isamatrix related to ‘R’ and

If Mt isamatrix related to ‘T’ and
MtoRr iSamatrix related to (TOR).

Thenwe have, Mtor =Mg OM

For example,

(D Let A={1,2 3} and let R and T be relations on ‘A’ whose
matrices

1 01 1 0O
aeMgp=|1 1 1|and My=|0 1 1| thenwe seetha,
010 1 01
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(1,1) eR and (1,1) eT=(1,1) €TOR
(1,3) eR and (3,1) eT=(1,1) €TOR
(13,3) eR and (3,3) eT=(1,3) €TOR
(2,1) eR and (1,1) eT=(2,1) €TOR
(2,2) eR and (2,2) eT=(2,2) €TOR
(2,2) eR and (2,3) eT=(2,3) eTOR
(2,3) eR and (3,1 eT=(2,1) €TOR
(2,3) eR and (3,3) eT=(2,3) eTOR
(3,2 eR and (2,2) eT=(3,2) €eTOR
(3,2 eR and (2,3) eT=(3,3) €TOR

++ M1oR =

O R
=
N N

We can check that, Mtor =Mpir © M1 s0 this formula gives an
easy way to compute ToR (by using MtoRr)

Note: (1) If R = T then we have ToR =R? and

MTOR:MR2 :MRGMR'

(2) If we haverelation R, T, S such that,

R T S
A B C D
Fig. 4.4

then To(SoR) = (ToS)oR [i.e. composition is associative]
(3) In General, RoS # SoR
(4) (SoR)t=Rtos?

Check your progress

1. A=B=C,A={X,y,z w} and Rand T be two relations
such that
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and MT:

O R kL O
m O O O
O O -
O O R P
R O O O
O R O Rk
A =

then compute (ToR) and (RoT)
2. Give an example of relations R and T such that RoT # ToR.

4.6 COMPUTER REPRESENTATION OF RELATIONS
AND DIAGRAPHS:

We know that a Relation ‘R’ on set ‘A’ can be represented by
ann X nmatrix Mg, if JA| =n. The matrix Mg has entries that are
‘O or ‘1. Then one of the easier way of representing ‘R’ in a
computer is by an n X n array having 0's and 1's stored in each
location. Thus, if A = {1, 2} and R = {(1, 1), (2, 1), (2, 2)}, then

Mg = 10 and these data would be represented by a two
R711

dimensional array MR, where MR[1,1]=1, MR[1, 2] =0,MR[2,1] =1,
MR [2, 2] =1 (MR means matrix related to ‘R’)

An another way of storing data for relations and diagraphs is
by using the linked list idea of computer programming. A liked list
will be constructed that contains all the edges of the diagraph, that is,
the ordered pairs of numbers that determine those edges. The data
can be represented by two arrays, TAIL and HEAD, giving the
beginning vertex and end vertex, respectively for all edges.

If we are making these edge data into a linked list, then we
need an array NEXT of pointers from each edge to the Next edge.

Consider the relation whose diagraph is
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The vertices are the integers ‘1’ to ‘6’ and we arbitrarily
number the edges as shown in above diagraph. If we wish to store
the diagraph in liked — list form so that the logical order coincides
with the numbering of edges. We can use a scheme mentioned
below.

START TAIL HEAD NEXT
1 3 9
2 3 10
2 1 4
3 5 8
5 4 1
3 4 3
3 6 0
6 1 7
1 6 6
1 2 5

Fig. 4.6

START contains 2, the index of the first data item, the edge
(2, 3) [thisedgeislabeled witha ‘1l infig: 5.6]. Thisedgeis stored
in the second entries of TAIL and HEAD, respectively. Since
NEXT [2] contains 10, the next edge is the one located in position
10 of TAIL and HEAD, that is, (1, 2).

NEXT [10] contains 5, so we go to next to data position 5,
which contains the edge (5, 4). This process continues until we
reach edge (3, 6) in data position 7. This is the last edge, and this
fact is indicated by having NEXT [7] contains ‘0'. Weuse ‘0’ asa
pointer, indicating the absence of any more data.

If we trace through this process, we will see that we
encounter the edges in exactly the order corresponding to their
numbering. We can arrange, in a similar way, to pass through the
edgesin any desired order.

But this scheme and the numerous equivalent variations of it
have important disadvantages. In many algorithms, it's efficient to
locate a vertex and then immediately begin to investigate the edges
that begin or end with this vertex. This is not possible in general
with the mechanism shown in fig : 2. So we have modification of it.
We use an additional linear array VERT having one position for
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each vertex in the diagraph. For each vertex |, VERT [I] is the
index, in TAIL and HEAD, of the first edge we wish to consider
leaving vertex | as shown below.

VERT TAIL HEAD NEXT
10 1 2 0
2 2 3 3
4 2 1 0
0 3 5 6
5 5 4 0
8 3 4 7

3 6 0

6 1 0

1 6 1

1 3 9
Fig. 4.7

In Fig. 4.5, the first edge could be taken to edge with the
smallest number labeling it. Thus VERT, like NEXT, contains
pointers to edges. For each vertex |, we must arrange the pointersin
NEXT so that they link together all edges leaving I, starting with the
edge pointed to by VERT [l]. The last of these edges is made to
point to zero in each case. In a sense, the data arrays TAIL and
HEAD redly contain several linked lists of edges, one for each
vertex.

In Fig. 4.7 we can see that VERT [1] contains 10, so the first
edge leaving vertex 1 must be stored in the tenth data position. This
is edge (1, 3). Since NEXT [10] = 9, the next edge leaving vertex
‘1 is (1, 6) located in data position ‘9'. Again NEXT [9] = 1, which
points us to the edge (1, 2) in data position 1. Since NEXT [1] =0,
we have come to the end of those edges that begin at vertex ‘1. The
order of the edges choosen here differs from the numbering in Fig. 1.

We then proceed to VERT [2] and get a pointer to position
‘2" inthedata. This contains the first edge leaving vertex 2, and we
can follow the pointers to visit al edges coming from vertex 2. Note
that VERT [4] = 0, signifying that there are no edges beginning at
vertex ‘4°.

So we have seen at least two methods for storing the data for
arelation or diagraph, one using the matrix of the relation and one
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using linked lists. There are number of factors which determines the
choice of method to be used for storage and an analysis shows that
matrix storage method is ‘n’ times faster than the linked list method
in most cases.

4.7LET USSUM UP:

We saw the definition of an equivalence relation and method
to produce partition using an equivalence relation and vice versa.
Then we saw the different operations that can be performed on
relations and how some of them can be used to find closures. Then
we saw different method for computing transitive closures with an
important method Warshall’s Algorithm. At the end we saw two
important concepts, composition of relations and computer
representation of relation and diagraph.

4.8 REFERENCESFOR FURTHER READING :

(1) Discrete structures by B. Kolman Hc Busby, S Ross PHI Put.
Ltd.

(2) Discrete mathematics and it's Application Keneth H. Rosen
TMG.

(3) Discrete structures by Liu.

4.9 UNIT END EXERCISES

Q.1 Let A = RxR, define the following relation ‘R’ on A : (a, b) R
(c, d) iff a%+b?=c?+d® show that ‘R is an equivaence

relation.
Q2 LetA={X,y,z,w} and ‘R bearelationon ‘A’ defined by,

Mg = compute a partition produce by ‘R’.

O O O
P P P O
P P P O
R P P O

Q3LetA={1,234,...12} andlet ‘R and ‘S be the following
relationson A : XRyiff 2|(Xx-y) and Xcyiff 3|(X-y).
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Compute —

@ R # st
(b) S (@ Mgys
(c) RUS () Mgns
(d) RNS (i) M1
(e R™ () Mg

Q.4 Find the transitive closure of arelation whose matrix is

B O R O B
B P O R O
O O r O R
O r O O
O r O Fr O

by (a) computing R (b) using Warshall’s Algorithm

Q5 LetA={1, 2 3, 4} andlet Rand Shetherelationson ‘A’ such
that

MR: and MS:

N N
O r» O O
O O kL, O
R O O K,
O R B
O O r O
O O k-
= = O O

use Warshall’ s Algorithm to compute the transitive closure of RUS.

Q6 If A={1 2, 3 4} and let R and S be the relations on ‘A’ such
that

1100 1011

1 010 0 010
MR= and MS:

1101 1101

0110 1011

Find (8) Mpog, (B) Mpos, (C) SoR , (d) RoS.
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5

PARTIAL ORDER SETSAND LATTICES

Unit Structure

5.0
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9

Objectives

Introduction

Definition and examples

Hasse diagrams

| somorphism

External Elements of partially ordered sets
Lattices

Let ussum up

Unit End Exercise

References for further reading

5.00BJECTIVES:

After going through this chapter students will be able to understand:

The definition of partially order sets and example based on it.

|dea of Hasse diagram and able to represent the diagraph of a
poset in more efficient way.

The concept of Isomorphism and which is useful in
classification of Posets.

The concept of maximal, minimal elements, the greatest and
least element, upper and lower bound of a subset and finaly
the concept of LUB and GLB.

The concept of Lattices and different properties of a Lattice.

5.1 INTRODUCTION:

We use relations to order some or all of the e ements of sets.

For example we order words using the relation, containing pair of
words (x, y) where ‘x’ comes before ‘y’ in the dictionary. We
schedule projects using the relation consisting of pairs (x, y) where x
and y are tasks in project such that x must be completed before y
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begins. When we add al the pairs of the form (x, x) to these
relations we get partial order. (Practical definition afterwards). These
structures are useful in set theory, algebra, sorting and searching, in
the construction of logical representations for computer circuits.

5.2 DEFINITION AND EXAMPLES:

Definition: Let ‘R’ be a relation on set A. then ‘R’ is said to be
partial order if ‘R is (a) reflexive (b) antisymmetric and (c)
transitive.

The set A with partial order ‘R’ is called as partial order set or
poset and It’s denoted as (A, R)

For example
(1) Let A=N and ‘R’ bearelationon ‘A’ suchthat x Ry iff x<y.

It's easy to check ‘R’ isreflexive, ant symmetric and transitive.
. Risapartial order.

(N, <) s a poset.
(2) Let S={1,2,3}and A =P(S)

SA={0.{1,{2.43).11.2},{2.3, 1.3} 9]
Let Rbearelationon A definedasx Rw iff x cw

(@ Let xeA,
X C X
.~ XRx VXxeEA
- R isreflexive

(b) Let x,w e A suchthat x Rwandw R x
XRw = x cw Q)
and WRx = w < x 2
~w=x from (1) and (2)

. Risantisymmetric

(c)Letx,w, ze A suchthatx Rwandw R z
XRw=Xcw )
and wWRz => wcz 2
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From (1) and (2) wehave, xcwcz .xcz ..XRz
- R istransitive

-.R ispartia order

- (A, R) isaposet

(3) Above example can be extended to any finite set aswell asfor an
infinite set

(4 Let A=N, & 'R' be a relation on ‘A’ such that x R y iff x

dividesy.
It's easy to check (A, R) is aposet.

(5) Let A=N and ‘R’ be arelation on A such that x Ry iff x <.
Then ‘R’ isn't a partial order. ((. R isn't reflexive -+ 3R J)
~(A,<)isn't aposet.

Note:

(1) Let ‘R’ beapartia order then R™* isalso a partial order.
R! iscaled as the dua of R and the set (A,R™Y) is called the
dual of the poset (A, R)
For example (a) dual of (N, <) is (N, >).

(2) IF (A, R) is a poset, the elements x and y of A are said to be
comparable if Xx Ry or y R x. The important observation is that
two elements in a poset may not be comparable.

For example 2 and 7 in N with divisbility relation are not
comparable (- 2]7 & 7]2)

(3) If every pair of elements in a poset is comparable, we say that
‘A’ is alinearly ordered and the partial order is called a linear
order and we say ‘A’ isachain.

Check your progress
1. Determine whether relation ‘R’ isapartial order onthe set ‘A’.
(@ A=N, and xRy iff x+y isan even number.

(b) A=N, and xRy iff x>y
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5.3 HASSE DIAGRAMS:

Result: The diagraph of a partial order has no cycle of length greater
than ‘1" (except at loops)

With the help of above result we can simplify the diagraph of a
partial order, simplified diagramis called as Hasse diagram.

Procedurefor finding Hasse diagr am:

1) Draw the diagram of given partial order so that all the arrows
are pointing in upward direction.

2) Remove all cycles of length ‘1" (i.e. loop at each of the
vertex)

3) Eliminate all edges that are implied by the transitive property
i.e. (@R b) and (b R c) then aRc so remove the edge from ‘&
to‘C

Fig. 5.1
4) Replace arrows by line segments and circles by dots.

For example:
(1) Let A={1, 2, 4, 5, 10, 20} with relation of divisibility.
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(2) Let S={1,23}andA =P(9={0,{1},{2},{3}.{1,2},{2 3}, {1 3}S}
with relation of contain (<)

{1,2,3}=S
{23}
{1,3} (1.2)
{3}
{1} {2}
o]

Fig. 5.7 Hassediagram
Check your progress:
Draw Hasse diagram of following diagraphs.

@ (b)
Fig. 5.8 Fig. 5.9

Fig. 5.10
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5.4 SOMORPHISM :

Let (A, R) and (B, T) be two Posets. Then (A, R) and (B, T)
are said to be Isomorphic if ¥ a function ‘f" from ‘A’ to ‘B’ such
that

(@) fishijective

(b) ‘f’ preserves partial order. [i.e. for any a, b in ‘A’, we have
aRbiff f(a) T f(b)]

Note :- If (A, R) and (B, T) are Isomorphic then such a ‘f’ is called
as an Ilsomophism from ‘A’ to ‘B’.
For example,

(1) Let (A, R)= (N, <)
(B, T) = (set of al even natural numbers, <)

Definef: (A, R) — (B, T) asf(m) =2m

(a) Let a, be A such that f(a) = f(b)
= 2a=2b
= a=b
.". fisoneone.

(b) LetbeB
. b=29(geN)
Takea=q
S.f(@=f(g=2q=b true »beB
.. fisonto.
.". fishijective.

Now, Let a, be A suchthat aRb=a<b
= 2a<2b
= f(a) <f(b)

.". f preserves partial order.

.". f isan Isomorphism.

.. (A,R) and (B, T) are Isomorphic.
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55 EXTERNAL ELEMENTS OF PARTIALLY
ORDERED SETS:

Let (A, R) be agiven poset.

An édement ac Aiscaled amaximal e ement of A if thereis
no element * X’ (except ‘@) in A such that aR X.

Similarly, an element be A is called aminimal element of A
if thereisno element * X’ (except ‘b’) in A suchthat XRb.

For example,
(1) Consider the Hasse diagrams of some posets as shown below.

0

5 3
1
(a) (b)
Fig.5.11 Fig. 5.12
Maximal element =0 Maximal elements=5, 6
Minimal element = 1 Minimal elements=0, 1, 2

(2) Consider a poset (N,<), minimal element = 1, maximal element
doesn’t exist.

(3) Consider aposet (Z,<)minimal and maximal doesn’t exist.

Result :-

Let ‘A’ be afinite non empty poset, then A has atleast one maximal
and atleast one minimal element.

An element a € A is caled a greatest element of ‘A’ if XRa

VXeA andanelementb € A iscaled aleast element of ‘A’ if bRx
VXeA.
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For example,

(1)

1
Greatest element = 3

Least element = 1 Fig. 5.13

(2) Poset (N,<) greatest element doesn't exist least element = 1
©)

e

a b
Fig. 5.14

Greatest element = e
Least element doesn’t exist

(4)
d

a b C
Fig. 11.15

Greatest as well asleast element doesn’t exist.
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Result :-
A poset has at most one greatest and at most one |east element.
Note:

(1) Greatest element is denoted by | and it's aso called as unit
element

(2) Least element is denoted by ‘O’ and it's also called as zero
element.

Consider a poset (A, R) and asubset ‘B’ of ‘A’. An element
‘U of A issaid to be an upper bound of B if bRu vbe B.

An element ‘ L’ of A is said to be a lower bound of B if
{Rb VbeB.
For example,

(1) Consider the following poset and find the upper and lower
boundsof (&) B;={2,5, 7} (b) Bo,={1, 3} (c) B3={3, 2,7, 4}

1 3
7
4 6
5
Fig.5.16
For By, Upper bounds are 1, 2, 3

Lower boundis5

For B,, No upper bounds
Lower boundsare 2,7, 4, 5, 6

For Bg, Upper bound is 3
Lower bounds are 5, 6

Note: 1) A subset ‘B’ of a poset may or mayn't have upper or
lower bounds.
2) It can have more than one upper or lower bounds.
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3) Upper or lower bound may or mayn't belong to given
subset.

Let ‘A’ beaposet and ‘B’ asubset of ‘A’.
1) Anelement areu € A iscalled aleast upper bound of ‘B’,
[LUB(B)]
(@  If ‘U isan upper bound of ‘B’.
(b)  If wisany other upper bound of ‘B’ thenu R w,

Similarly,
2) An element | & A is caled a greatest lower bound of ‘B’,
[oLB(8)]

(@ If ‘I’ isalower bound of ‘B’.
(b) If ‘t" isany other lower bound of ‘B’ thent R I.

For example,
(1) Consider the following poset
(a) for asubset B ={e, d, h}
Upper bounds=4a, ¢, b
Lower bounds=h, f, g
LUB(B)=h
GLB(B)=does not exist (as‘a and ‘c’ are not comparable)

b

Fig. 5.17

(b) For asubset D ={a, d.f. g}
Upper bounds=a, b LUB=a
No lower bounds GLB = does not exist
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(c) For asubset E={a, e, d}
Upper bounds=a,bLUB=a
Lower bounds=h, f, g GLB =h

Result :

Suppose that (A, R) and (B, T) are Isomorphic posets under the

Isomorphismf: A —» B

@ If ‘@ isamaxima (minimal) element of (A, R), then f(a) isa
maximal (minimal) element of (B, T).

(b) If ‘@ is the greatest (least) element of (A, R), then f(a) is the
greatest (least) element of (B, T)

(c) If ‘a is an upper bound (lower bound, least upper, upper bound,
greatest lower bound) of a subset ‘D’ of A, then f(a) is an upper
bound (lower bound, least upper bound, greatest lower bound)
for the subset f(D) of B.

[Notation : if D = {1, 2, 3} thenf(D) ={f(2), f(2), f(3)}]

(d) If every subset of (A, R) hasa LUB (GLB), then every subset of
(B, T) hasa LUB (GLB).

For example,

(1)

a 1

Fig. 5.18 Fig. 5.19

This two posets are not Isomorphic as first one have a greatest
element but second one not.

(2) Consider the posets, A ={1, 2, 3, 6} with divisihility relation and
S={1,2}, A = P(S) with contain relation
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6 S
5 3 {1} {2}
: o]
Fig. 5.20 Fig. 5.21

So these two posets are Isomorphic under the Isomorphism ‘f’
which is defined as, f(1) = [, f(3) = {2}, f(2) = {1}, f(4) = S and
they satisfy all conditions stated in above result.

Check your progress

1. Consider the poset,

Fig. 5.22
(@ Find maximal, minimal, greatest and least element if exist.
(b) For following subsets find
(i) All upper bounds
(ii) All lower bounds
(iii) The least upper bound
(iv) The greatest lower bound
1) B;={ac.h}
2) BZ ={h’ f’ g, e}
3) Bz={ad e f}
4) B,={b,c, h, €

2. Check whether following posets are Isomorphic if yes find the
corresponding Isomorphism.
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a b
e
! t
d
c
c
d
e

b
a
Fig. 5.23 Fig.5.24
1
S 4
I 2
3
1
5
2 3 4
Fig. 5.25 Fig. 5.26
6
d
c e 1 5
1l
a 3
Fig. 5.27 Fig. 5.28

3. Find maximal, minimal, greatest and least element if exist.
(@ A = Z withusual partial order <.
(b) A={Xx/XxeR and 0< X<1}withusual partial order <
(c) A={X/XeR and 0< X<1}withusud partia order <

(d) A={x/xeR and 0< X<1}with usud partia order <
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5.6 LATTICES

5.6.1 Definition

A lattice isaposet (L, R) in which every subset consisting of
two elements has a least upper bound (LUB)and greatest lower
bound (GLB).

Notation :- If asetis{a, b} then LUB({a b})is denoted by avband
itscaled asjoinof ‘@ and ‘b’. Similarly, GLB ({3, b}) is denoted
by arb andit'scalledasmeet of ‘@ and ‘b’.

d
For example

(1) Consider a poset, c

Fig. 5.29

o0 Tol<
OO0 T 9| D
O O T O|T
el oRoN (@)
0O 0 0ol
o0 T wl|>
LoD ODID
T TO|T

OO0 V|0
OO T o

So, from the table of join and meet we can see LUB and GLB of
any subset with two elements exist.
.. it'salattice.

(2) Consider a poset, X y

Fig. 5.30

Since LUB ({X, y}) doesn’t exist.
.. it'snot alattice.
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() Let ‘S beagiven set and L = P(S). Consider ‘L’ with relation
contain (<)

We know that (L, <) isaposet.
Letx,y e L,then xvy=XUY and XAY =XNY
and which exist in L. (asthey are subsets of ‘s’)

.. (L,o) isalattice.

(4) Consider the poset (N, divisibility relation),
Let X,yeN,
then Xvy=LCM (X,y) and XAy=GCD(X,Y)

(5) Let neN,

Let D,= set of al positive divisors of ‘n’, then it can be proved
D,with divisibility relation is a poset.

For example,

Ifn= 20, then D20: {1, 2, 4, 5, 10, 20}

20

1

Fig. 5.31
Hasse diagram of Dyq

isalLattice. [it can be proved similarly asin example (1).]
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Check your progress

1. Check whether following Hasse diagrams are lattice or not?

f
e
e d
C bé d
b c
a a

Fig. 5.32 Fig. 5.33
@ (b)
t
1 2
3 y W
4
5 6 X
Fig. 5.34 Fig. 5.35
(©) (d)

5.6.2 Isomorphic Lattices

Let (Ly, Ry) and (Lp, Ry) be two given posets. A function

f:L; —> L, issaid to be anisomorphism if

(1) ‘f" ishijective

(2) f preserves the Lattice properties. [i.e. if a belL then
f(avb)=f(a)vf(b) and f(arb)=f(a)Af(b)]

Note: (Ly, Ry) and (L,, R,) are said to be Isomorphic L attices.
For example,

(1) (Dg, divisibility) and (P({l, 2, 3}), <) arelsomorphic Lattices.
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5.6.3 Propertiesof Lattices

Theorem :-

Let (L, R) bealattice, then for every ‘a and‘b’, ‘c’ in‘L’,

1)
)
®3)
(4)
©)
(6)
(7)
(8)

(9)

(11) an(av

(
(10) av(an
(

avb=b iff aRb
anb=a iff aRb
anb=a iff avb=Db
ava=a
_ } Indempotent Properties
ara=a
avb=bva
_ Commutative Properties
anb=baa

av(bvc)=(avb)

(
(

an(bac

vC
an b) A } Associative Properties

b)=a
b

)
)
)=a

} Absorption Properties

Proof :-

(1)

)
(4)
(6)

(7)

Assume avb=b
" aR(avh)
..aRb

Conversely, if aR b, sinceb R b, b is an upper bound of ‘a
and ‘b’. So, by definition of least upper bound we have
(avb)Rb. Since, avb is an upper bound, bR(avb), so

avb=b.

and (3) proof similar to (1).

and (5) follows from definition of LUB and GLB.
LUB ({a b})

LUB ({b, &)

= bva

avb

Proof similar to (6)
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(8) Fromdefinitionof LUB, wehave aR (av(bvc)) and

(bvc)R(av(bvc)) andalso bR(bvc) and cR (bvc) so by
trangitivity, bR(av(bvc)) and cR(av(bvc)) thus,
av(bvc) is an upper bound of a and b, so by definition of
LUB we have, (avb) R(av(bvc)).

Since, av(bvc) isan upper bound of avband c, we obtain
((av b)vC)R(av(va))

Similarly, (av(bvc))R((av b)vc)
By antisymmetry of R, we have (avb)vc=av(bvc)

(9) Proof Similarto (7)

(10) Since, (anb)Ra and aR a, we have ‘a is an upper bound of
anb and‘a so av(arb)Ra.
On the other hand, by definition of LUB, we have
aR(av(anb)),so av(arb)=a

(11) Proof issimilar to (10).

5.7LET USSUM UP

We started the concept of partial order set (poset), a set with
some special properties of a relation, defined on aset. Then we saw
if agiven relation is a partial order then diagraph of a partial order
can be represented in better way, so that we can retrieve more and
more properties of a given poset. Then we had seen a concept of
Isomorphism, which divides the space of Lattices in different
groups. Then we saw the concept of maximal, minimal elements,
upper bounds, lower bounds, GLB and LUB of a subset of a given
poset. GLB and L UB concepts are useful in defining Lattice which
in turn useful in defining Boolean Algebra (which we will be seeing
in the next chapter).
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5.8 UNIT END EXERCISES

1. Determine whether the following relation ‘R’ is a partia order or
not on a given set.

(@ A=Z,aRbiff a+ biseven.
(b) A=Z,aRbiffa=Dh.

2. Determine the Hasse diagram of the relation on A={1, 2,3 4,5
whose matrix is

10111
1000
01111 L 10 0
@ (00111 b
(@ O
00010
1101
00001

3. Draw the Hasse diagram of Poset with partial order divisibility)
and determine which posets are linearly ordered.

@A={12 3,486,912, 36}
(b) A ={3, 6, 12, 36, 72}

4. A isthe set of all 2 X 2 Boolean matrices and the relation ‘R’ is
definedasM RNiff m; <ny;, 1<i<2,1<j<2.

(@) Find maximal and minimal elements of A
(b) Find the greatest and least element if exist of A.
(c) Find al upper and lower bounds of

S

(d)Find GLB and LUB of aboveset ‘B’.

5. Draw the Hasse dlagram of D30, D36’ D42.

6. Determine whether following Hasse diagram represents a L attice
or not.
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() (ii)

(iii) (iv)

N

Fig. 5.38

d

X

Fig. 5.39
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FUNCTION

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 Functions

6.3 Types of function
6.4 ldentity functions
6.5 Composite function
6.6 Inverse function
6.7 Binary operation
6.8 Properties of binary operation
6.9 Review

6.10 Unit End Exercise

6.0 OBJECTIVES:

e A function is the centra to the study of physics and
enumeration.

e In computer implementation of any program output of any
program can be considered as a function of the input.

e Binary operations have applications in the study algebraic
structures.

6.1 INTRODUCTION:

A function was the heart of the scientific revolution of the
seventeenth century. To understand the genera use of function we
must study their properties in the general, which is what we do in
this chapter.

The reader is no doubt familiar with function of the form
y= f(x) forinstance, if f(x)=x*-2, x=2 and y= f(2) then the
valueof yis4.
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6.2 FUNCTIONS:

Definition: Let X and Y are non-empty sets. A function f form

X toY if for each element of ae X exactly one elementbeY (caled
the image of a under f) such that a is in relation fto b, then is
called function or mapping from X to Y.

If f isafunction (mapping) from X toY we write

f:X>Y OrXx—>Y.

Suppose f is a any function from X to Y. Here set X is caled
domain of the functionf, and set Y is called co-domain of
functionf. The image of a functionf:X—>Y is the
set f(X)={f(a)/ae X}. The pre-image or inverse image of the
function f:X —Y istheset f*(b)={a/f(a)eY}.

Therange of afunction f : X — Y asthe image of itsdomain. i.e. set
f(X).

For the functiony=f(x), y is aso known as the output
corresponding to the input x.

Note: Every element a< X hasanimage, but it is not necessary that
every elementbeY aso has pre-imagein X.

Example-1. State whether the following are the function or not. If
X ={p.q,r,s} andY ={1,2,34}. Give reasons and also find the range
of the function.

Solution.
(i) Sincetheelement se X do not haveimageinY, therefore f
isnot afunctionfrom X toY.
(i) The element qe X it has two different imagesin Y i.e. 3 and
4eY . Therefore g isnot afunction from X to Y.
(iii) By definition of function, each element of X has exactly
one image in Y. Therefore h is a function from X toY. So
rangeof h=h(X)={1,234} =Y.
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Example-2. Let the function f:X >R be defined
by f(x)=x*+3x+2.If X={-1,0,1,2} thenfind range of f .

Solution.
Giventhat f isthefunctionfrom X — R . By definition of range we

have to find image of each element of X.
f(-0) =(-2)° +3(-1)+2=-2
f(0)=(0)’+3(0)+2=2
f()=()’+3(1)+2=6
f(2)=(2)°+3(2)+2=16

Thustherange of f istheset{-22,6,16}.

6.3 TYPES OF FUNCTION:

Definition: A function f:X —>Y is sad tobe injectiveor
(one—one or monomor phism) if x,x, € X : f(x)# f(x,) = x # x,0r

equivaently f(x)=f(x)=x =Xx,.

Definition: A function f: X —Y issaidto be surjective or
(Onto, or epimor phism), if every yeY suchthat y= f(x)
for some xe X.

A function that is injective and surjective is said to be bijective, if
f: X > Y is a hijective function we may writef : X =Y. For eg.

Let the function f : X —Y isdefined by

Fig.6.1

Heref(a)=1 f(b)=2, f(c)=3.
L) #E () =3 X
f isinjective. (1)
+V yeY 3 xeX Sothat f(x)=y.
. fissurjective. (1)
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from | and Il we say that
f isbijective.

eg. If f: A> B, defined by f()=a,f(2)=a, f(3) =b.
WhereA={1,2,3},B={a,b,c}. Then check whether the function is
bijective or not?

Solution: If f:A—>B, defined byf@)=a f(2)=a f(@)=b.
WhereA={1,2,3},B={a,b,c}.

\
J

A B

Here, f(1)=f(2) but 1= 2.
. f:A— B isnotinjective.

. f:A— B isnot bijective.

Example-3 If function f:R — R isdefined by f(x)=3x-1
then provethat f isbijective.

Solution. Wefirst show that f isinjectivei.e.
fFx)=f00)=x=x

So we assume that
f(x)=f(x)
S3x —-1=3x,-1
~.3% = 3%, (Adding 1 both side)
SX =X (Dividing both side by 3)
- Thus f isinjective. ()

Now to show that f issurjective.

Let y be a real number. We must find value of x such that f(x)=y.
Thus we must find x such that y=3x-1 solving,
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Thus f issurjective. (1)

from | and Il we say that
. f ishijective.

6.4 IDENTITY FUNCTIONS

Definition: A function f on X is said to be identity function if
f(x)=x for everyxe X . It is denoted by 1, and leaves every input
unchanged. For eg. Let X={123} and f={(11),(22),(33)}
which can be written in equation f(1)=1,f(2)=2,f(3)=3 is an
identity function of X .

Theorem 6.1. Let f: X Y for each subset AcY,
f(f (A)cA.

Proof. Let be f(f(A))
= f(a)=b for some ae f*(A)
= beA
= f(f*(A)cA.

Theorem 6.2.If f isfunctionform X onto Y then f (f *(A)) = A.

Proof. Abovetheorem 4.1 we provethat f(f™*(A)c A.

For opposite inclusion let be A then there exist some element
ae X suchthat f(a)=b because f onto.

f(@=be A= aec f (A
= f(a)e f(f*(a))
=be f(f(A)
Ac f(F7(A)
Hence f (f *(A)) = A.

Theorem 6.3. Letfunction f: X —Y for each subset Ac X ;
ThenAc f(f(A).

Proof: Let f:X —Y for each subset Ac X.

Let ac A= f(a)e f(A)
= ae f(f(A) (By definition of pre-image)
= Ac fY(f(A).
HenceAc f'(f(A)).
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Theorem.6.4. If f isone-to-one function from X onto Y, then
A= f(fY(A).
Proof. In above theorem we provethat Ac f(f(A)).
Let ac f(f(A) = f(a)=f(A
= f(a)= f(a) Forsomea € A.
=a=a Since f isone-to-one.
= acA
= f(f(A) cA.
Hence A= f(f '(A).

6.5 COMPOSITE FUNCTION

Definition: Let f:X ->Yand g:Y — Z then the composite of the
function f and g denoted by (gof) isafunction of X — Z given by
(gof): X — Z such that (gof )(x) = g[ f (X)], Vxe X.

For eg. LetX ={p,q,r}, Y={123}andZ={c,d,e}. Let f:X >Y
and g:Y >Z be defined by
f={(p,2),(a,1),(r,3)}andg ={(1,d),(2.c).(3.e)}. Then  the
composite function (gof ): X — Z may be computed in the following
manner: (gof )(p) = g[ f (p)]=9(2) =c,

(gof )(@) =g[f(a)]=9®)=d,(gof )(r)=9g[f(r)]=9(3)=e.

Thus (gof): X — Z isgiven by (gof) ={(p.c),(a.d),(r.e)}.

Example-4: Let f :R —» R isdefined by f(x)=x+1,vxeR,
And the function g:R — R isdefined by g(x) = x*,VxeR.
Find gof and fog.

Solution: Let the composite function gof : R — R isgiven by
(gof)(¥) = g[ f(¥)]=9(x+1) =(x+1)*. And the composite function
fog:R - R isgiven by (fog)(x) = f [g(X)]= f(x*) =x*+1.

.. gof = fog

Remark; In general the composite function is not commutative.

Theorem 6.5. If f W — X, g: X ->Y andh:Y — Z, then
(hog)of = ho(gof).

Proof. Itisclear that (hog)of and ho(gof) isthe function from W

to Z. This two function will be equal if they have the same image to
each elementxeW .
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Now, ((hog)of )(x) = (hog)(f (x))
=h(g(f(x)))
= h(gof (X))
= (ho(gof ))(x)
Which shows that (hog)of = ho(gof).

6.6 INVERSE FUNCTION

Definition: Let f:X —Y be aone-to-one function. The inver se of
function denoted by f*, istheset of f*={(y,x)/(xy)e f}.

This, if f:X—>Y is a oneto-one function, then
f(X)=y = x=f"(y) for xe X andyeY.

Theorem 6.6. The inverse of a one-to-one and onto function is
unigue.

Proof. Let f:X-—>Y be oneto-one and onto function. Let
g:Y - X and h:Y — X betwo different inverse function of f .
Thenfor x,x, e X thereexists yeY such that g(y)=x, h(y)=x,.
~g(y)=x=>y=f(x) -+ g istheinverseof f .

~hly)=x=y=f(x,) + histheinverseof f .
Thenit followsthat f (x) = f(x,) = x =X,.~~ f iSone-to-one.

=g(y)=h(y) ForyeY.
Hence the inverse of a one-to-one and onto function is unique.

Theorem 6.7. The inverse of a one to one function is one to one and
onto.

Proof. Let f: X —Y beone-to-one and onto function.
Then for x,x, e X there exists y,,y,eY such that f(x)=y and
f (Xz) =Y, =X = f_l(yl) and X, = f _1(y2) .
Now fory,,y, eV,
fﬁl(yl) = fﬁl(yz) =X =%
= f(x)="f(x)
=>Y¥%=Y,
Thisprovesthat f isone-to-one.

Again since fisonto, then for yeY there exists some xe X such
that f(x)=y=x=f"(y) - f isoneto-one
This proves f*isonto.
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Example-5 If function f:R — R be defined by f(x)=2x+3 for
every xe R, hasitsinverse ( f isinvertible). Find formulafor f .

Solution: Let f:R —» R bedefined by f(x)=2x+3 forif x,x,eR
then f (x) = f(x,) =>2x +3=2x,+3
= 2% =2x%, (Adding -3 both side)
=X =X, (Divide by 2 both side)
Thisprovesthat f isone-to-one. ( f isinjective) I
Again,ifyeR, y=f(X) = y=2x+3
y-3

= X=>
2

Thusfor xe R there exists %(y—3)eR such that

1 1
f (E(y—B)j = ZLE(y—B)j+3

=y-3+3=Yy.
Thisprovesthat f isonto. (f issurjective) I
-. From1 and Il wesay that f ishijective.
. fhisexists and it is defined by

£(y) =%(y—3) cR.

Example.6. If each functions f and g is one-to-one then function
gof is one-to-one.

Solution: Let f: X —Y and g:Y — Z isone-to-one function.
Let x,x, € X then gof (x) = gof (x,)
= g(f(x))=9(f(x,))
= f(x)=f(x,) > (g isone-to-one)
=X =X, -+ (f isone-to-one)
Hence function gof isone-to-one.

Examlpe.7. If each function f and g is onto then function gof is
onto.

Solution: Let f: X —»Y and g:Y — Zisonto function.
By definition of composite function gof : X — Z .To prove that gof

is onto we have to prove that every element zeZ is an image
element for some xe X under gof . Sincegisonto 3 yeY such

thatg(y)=z. Agan f isonto 3 xe X suchthat f(x)=y.

Now, gof (x) =g(f(x))=g(y)=z.
Hence function gof isonto.
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Example.8. Let A and B be two non-empty sets. Let f:A— Bbe
the function then prove that, If A and A, subset of A sothat A c A
then f(A)c< f(A). Istheconversetrue?

Solution: Let ye f(A) 3 xe A suchthaty= f(x).
SinceA c A, xe A suchthaty= f(x).
Lt f(A)=yef(h)
= f(A)c f(A).
But the converseis not true.

To show that the converse is not true we give counter example.
Let f:A— Bbethefunction. f(a)=1, f(b)=1, f(c)=2

- A={ab,c},B={1,2}
Let A={ac}land A ={a,b} bethe subset of A.
< f(A)={12} and f (A)={12}.

= f(A)=1(A)

= f(A)c f(A) But=A < A,.

EXERCISE 6.1

1. Decide whether or not the following are functions from A to B
where A={ab,c,d,e} andB={p,q,r,s}. If they are function, give

the range of each. If they are not tell, why?
() f={(2p).(c.a).(e:3).(d1)}.

(i) g={(a1).(e39).(c.p).(b.r)(2.9).(d. P)}
(iii) h={(a, p).(b.s).(c.t).(d,q).(er)}.

2. Each of the following formulas defines a function from Rto R.
Find the range of each of the function.

(i) f(x)=x%.
(i) g(x)=sinx.
(iii) h(x) = x*+1.

3. Let Q be the set of rational numbers. Let f:Q — Q be defined
by f(x)=2x+3,xeQ. Show that f is bijective. Also find a
formulathat the inverse function f .

4. Prove the following two result for afinite set T :
() If f mapsT onto T then f isone-to-one.

(i) If f isaone-to-one mapping of T into itself, then f isonto.
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5. Let X=R-{3} and Y=R-{1} where R is the set of red
numbers. Let the function f: X —Y be defined by f(x)=x;§ is

X_
thisfunction is bijective?

6. Prove that identity function of set T into itself is one-to-one and
onto.

7.1f f:X—>Y and g:Y — Z be two one-to-one and onto function,
then gof :X »>Z is aso oneto-one and onto also Show
that(gof)™*:Z > X =(f"og™)Z > X.

6.7 BINARY OPERATION

The basic idea underlying the definition of an algebraic
structure is that of a set with a binary operation. Suppose we have a
set A of objects with the property that any pair of them x andy, can
be combined in some way to form an objectsz. This can be
expressed by the equation

X*xy=127
Where the = indicates a binary operation. The word binary
signifying here that two objects are involved. The most familiar
examples are the arithmetical operation like + and x defined on the
set of integersZ.

Definition: Given aset of element A, then abinary operation * on
the set A is arule of combination which assigns to each ordered
par of element a,be A a unique elementce A. We write

symbolically thatc=ax*b.

Example.9. Let Nbe the set of al natural numbers then the
operation of addition on the set N is a binary operation for if
a,beN thensoiscwhere c=a+b.

Example.10. Let A be the of all odd integers then the operation of
addition on the set A is not a binary operation for if a,be A then

c¢ A wherec=a+b.

Remark: Addition, Multiplication are the binary operation
inN,Z,Q,R.

Subtraction is binary operation inZ,R. Division is not a binary
operation.
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6.8 PROPERTIES OF BINARY OPERATION

Commutative: A binary operation * on a set of element A issaid to
be commutative, if and only if, fora,be A,

a*b=b*a

Associative: A binary operation * on a set of element A issaid to be
associative, if and only if, for every a,b,ce A,
a*(b*c)=(a*b)*c

Distributive: A binary operation * on a set of element A is said to
be distributive over the binary operation on the same set A
elementsif and only if for everya,b,ce A,

a*(boc)=(a*b)o(a*c)

Identity element: Anelement e inaset A issaid to be aidentity
element with respect to the binary operation * on A if and only if for
everyae A,

a*e=e*a=a

Inverse element: An element b isinaset A issadto beinverse
element of an element ae A with respect to the binary operation *,
if and only if,

a*b=b*a=e

Example.11. Check the following operation is commutative and
associative. a*b=a+b-10, For everya,beZ.

Solution: For everya,beZ.
(i) a*b=a+b-10
=b+a-10
=b*a
- * isacommutative.

(i1) a*(b*c)=a*(b+c-10)
=a+b+c-10-10
=a+b+c-20 I

(a*b)*c=(a+b-10)*c
=a+b-10+c-10
=a+b+c-20 [
From | and Il we say that,

a*(b*c)=(a*b)*c
~."*" isan associative.
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Example.12. The binary operation * on the set of all real numbers
are defined by a*b=|a—b|. Show that the * is commutative but not

associative.

Solution: Since a*b=|a-h
=|b-al
=b*a

- *" isacommutative.

Again,
(a*b)*c=la—b|*c
=[a-bl-¢
a*(b*c)=a*|b—c|
=[a-fo—c]
If a=1,b=2,c=5 then
(a*b)*c=[1-2 -5 =[1-5=4
a* (b*c)=[1-|2-5]=[1-3 =2
~."*" isnot associative.
Example.l3. A binay operation * is defined on
Q—{O}asa*b:%.Va,beQ—{O}
Show that the * is closed under commutative, associative and also

find identity and inverse element of the binary operation.

Solution: For va,b,ce Q—-{0},

(i) a*b:%:%zb*a

- isacommutative.

ab
1 * * A~ _ ab * _(9)C_abc
(ii) (a*b) C_(EJ C_T_H

%)
a*(b*c)=a* (E] __\9)_ahe
9 9 81

~(a*b)y*c=a*(b*c)
%" isassociative.



109
(iii) Let ebe an identity element in Q- {0} with respect to **’.
a*e=a

=a

9
n.e=9 +9eQ-{0},a=0
-.e=9 be anidentity element inQ - {0} with respect to **’.

(iv) Let b beaninverse elementin Q—{0} with respectto‘*’.
a*b=e
sa*b=9 re=9
2 g
9
b=t
a
81

~.b==—beaninverse element in Q-{0} with respectto‘*’.
a

Exercise 6.2

1. Check whether the following binary operation defined on
corresponding set is commutative or associative.

(i) a*b=2a-b for a,beZ

(i) a*b=a+b-3 for a,beZ

(iii) a*b=[2a-3b| for a,beR

(iv) a*b=a’ for a,beR
2. Find identity and inverse of element inZ .
Wherea*b=a+b-10, Va,beZ.
2182
3. Abinary operation * is defined as a*b= 22 ,Va,be Q-{0},

Show that * is commutative and associative also find identity and
inverse element in Q- {0} with respect to **’.

6.9 REVIEW

In this chapter we have covered the following points:

*
0.0

Function and term related to function ( range, image, Pre-
image).

Injective function, surjective function and bijective function.
Identity function, composite function, inverse function.

»  Binary operation and their property.

>

R/
%

*
0.0

G
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6.10 UNIT END EXERCISE

1. Define the term give example of each term.: function, range of
function, Image of function, pre-image of the function.

2. Explain all the of function with their definition and counter
example.

3. Decide whether or not the following are functions from A to B
where A={p,q,r,sit,u} andB={a,b,c,d}. If they are function, give
the range of each. If they are not tell, why?

().  ={(p.a).(ab).(s.0).(r.0)}

(i) 9={(t:a).(s:a),(p.c).(r.b)(s.d)}.
(iiiyh={(p,a),(s,b),(t.d).(a.c)}.

4. Each of the following formulas defines a function from RtoR .
Find the range of each of the function.

() f(x)=x+2.

(i) g(x) = cosO .

(iii)) h(x) = x* +5x—6.

5. Find the image set of the function f:R—R defined by
3x

X241

6. Let Q be the set of rational numbers. Let f:Q —» Q be defined
by f(x)=9x-4, xeQ. Show that f is bijective. Also find a
formulathat the inverses function f .

f(X) =

7. Let X:R—{g} and Y=R-{0} where R is the set of redl
numbers. Let the function f: X —Y be defined by f(x)= 2x1 c is

thisfunction is bijective?

8. Show that f:R >R isgiven by f(x)=|x| are neither injective
nor surjective.

9. Let the functions f:Z+—>R,f(x)=il, 9:Z—->7Z,9(x)=x"+3
X+

and h:R — R,h(x) =3x+2 then determine the following composite
function (i) hog, (ii) fog, (iii) gof , (iv) foh, (v) hof , (vi) goh.
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10. Let f:R—R and g:R—R be two function given by
f(x)=[q+x for al xeR and g(x)=|x-x for dl xeR. Find fog
and gof .

11. Let f:A—>B be a function. IfB,cB <B, then show
that f *(B,) < f *(B).

12. Check whether the following binary operation defined on
corresponding set is commutative or associative.

(i) a*b=a? for a,beZ
(i) a*b=2a+2b-8 for a,beZ
(iii) a*b=2% for a,beR
(iv) a*b=ab+a+b for a,beR

13. Find identity and inverse of element inZ Wherea*b=a+b-3,
Va,beZ.
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PIGEONHOLE PRINCIPLES

Unit structure:

7.0 Objectives

7.1 Introduction

7.2 Pigeonhole principle

7.3 The extended pigeonhole principle
7.4 Letussumup

7.5 Unit End Exercise

7.00BJECTIVE

After going through this chapter you will be able to:
¢ learn different counting techniques like Pigeonhole Principle
e define cardinality of sets
e |earn about the propertiesrelated to cardinality of sets

7.1INTRODUCTION

This chapter dedicated to the study of ‘size’ of sets and also
we show how one can efficiently do the counting in a variety of
situations. We represent the basic principle of counting which is
easily derived and extremely useful. We know that some sets are not
finite there for Cantor gives cardinality of infinite setsin 1870's and
1881's.

Suppose there are 7 peoples working in an office and a pile
of 8 letters is delivered. Each letter is addressed to are of the people
in the office, and letter are put in the appropriate pigeonholes. Then
we know for sure that some are is going to be lucky and get more
then one letter. Generaly it seen obvious that if n>m and n
letters are put into m pigeonholes then one pigeonhole will
receive mor e then one letter.



113

If the statement is obvious then so also must be its
cantrapositive, because that is logically equivalent to it. The
cantrapositive is. if every pigeonhole receives at most one letter,
thenn<m.

Now we can formulate a purely mathematical form of this
principle we suppose that the letters are numbered
1,2,3,4——-——,nand the pigeonholes are numbered 1,2,3,4————,m for
each letter the address tells us which pigeonhole should receive it.
Thus in mathematical terms we have a rule for assigning letters to
pigeonholes that is a function from set N to the setN_. The

condition that every pigeonhole recelves at most one letter is
equivalent to the condition that this function is an injection.

Thus the cantra positive from the origina statements
essentially: if afunction N, — N isan injection.

Then it must follow thatn<m. Now we know that what we
have to prove.

Theorem : 7.1 Let mbe a natural number then the following
statements true for every natural number n if there is an injection
from N, tothesetN  thenn<m.

Proof : We use the principle of induction. The statement is true
whenn=1, since 1<m for any natural numberm. The induction
hypothesis is that the statement is true when n taking a specific
valuek >1. We have to deduce that it istruewhenn=k +1.

Suppose that f:N, — N_ is an injection. Since k+1>2 it

follows that m can not be 1. So m=s+1 for some natural numbers.
In order to show thatk+1<m=s+1. We construct an injection
f:N, > N, and uses the induction hypothesis conclude thatk <s.

There are two cases:
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(1) Case:1l: Suppose that f(x)=s+1 foral xeN,. Thenlet be
the injection defined by " (x)=f (x) for al xeN,.

(I1) Case:2: Suppose that there is an xe N, such that f(x)=s+1.
Then f (k+1)=y. Where (since f isinjection) y=s+1 in this case
defined f* asfollows.

f'(x)=y, f(2)=f(2 (z=x.

It iseasy to check f isaninjection N toN, .

f f
— —
[
\><7 —
A N

The theorem is contrapositive from the original statement:
If n>m then thereisnoinjection from N, > N_

7.2PIGEONHOLE PRINCIPLE

We represent the basic principle of counting which is easily
derived and extremely useful.

Statement: If there n-pigeons to be placed in m-pigeonhole
wherem<n. Then there is at least one pigeonhole which receives
more then one pigeon.

PignhoIePrincipIe '

Here is a simple consequence of the pigeonhole principle.
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In one set 13 or more people there are at least two whose
birthdays fall in the same month.

In this case we have to think of putting the people in to
pigeonhole. it can be January, February, March and so on. Since
there are 13 people and only 12 pigeon holes one of the pigeonhole
must contain at least two people.

That this intuitively obvious result can be quite useful is
illustrated by the following example.

Example 1:
If eight people are chosen in any way what so ever at |least
two of them will have been born on the same day of the week.

Solution :

Here each person (pigeon) is assigned the day of the week
(pigeonhole) on which he and she was born since there are eight
people and only seven days of the week, the pigeonhole principle.
Tells us that at |east two people must be assigned to the same day.

Example 2:

Consider the area shown it is bounded by a regular hexagon.
Whose sides have length 1units. Show that if any seven points are
chosen with in this area then two of them must be on further apart
then 1 unit.

Solution:
Suppose that the areais divided in to six equilateral triangles.
Asshowninfigure 1.1

If seven points are chosen we can assign each one to a
triangle that containsit.

If the point belongs to several triangles, assigns it arbitrarily
to one of them. The seven points one assigned to six triangles so by
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pigeonhole principle, at least two points must belong to the same
triangle. These two can not be more then 1 unit apart.

Example 3:
Five points are located inside a square whose sides are of

length 2. Show that two of the points are within a distance J2 of
each other.

Solution :
Divide up the sguare into four square regions of area 1 unit.
asindicated in figure 1.2.
1 1

fig.1.2

By Pigeonhole principle, it follows that at least one of these
regions will contain at least two points. The result now follows since
two pointsin a square of radius 1.can not be further apart then length

of the diagonal of the square is which (by Pythagor as theor em) J2.

Example 4 :
Show that if any five numbers from 1 to 8 are chosen, then
two of then will add to 9.

Solution :
Constructs four different sets each contains two numbers that

add to 9, asfollows A ={1,8},A ={2,7}, A ={3,6}, A, ={4,5} each of

the five numbers chosen will be assigned to the set that contains it
.Since there are only four sets. The pigeonhole principle tells that
two of the chosen numbers will be assigned to the same set. These
two numberswill add to 9.

Example5:
Fifteen children together gathered 100 nuts. Prove that some
pair of children gathered the same numbers of nuts.
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Solution :
Now to prove that we use method of contradiction.

Suppose al the children gathered a different numbers of
nuts. Then the fewest total number is
0+1+2+3+4+5+6+—-———+14=105, but this is more then 100.
Which is contradiction to our assumption. There fore at least pair of
children gathered same number of nuts.

Example6:
Show that in any set of 10 integers there are at least pair of
integers who have same remainder when divided by 9.

Solution :

Set of 10 integers, when it divide by 9, lie in the same residue
classes of modulo 9. i.e. the remainder is 0,1,2,3,4,5,6,7,8. Here
there will be 9 remainder and 10 integers. There fore by pigeonhole
principle, at least one integer has same remainder.

Example 7 :

Any 7 numbers are chosen from 1-12. Show that,
(). Two of them will add to 13.
(ii). There are two respectively prime integers.

(iii). There are two integers such that 1 is a multiple of the other.

Solution :
(i). We form the box different sets (boxes) each containing two
integers from 1-12 with their sum as 13 as follows.

(1,12 {4,9)
(2,11} {5, 8}
{3, 10} {6, 7}

These six sets are the boxes and the 7 integers chosen from 1-
12 are objects each of these 7 integers will be arranged if the set that
contains it since there are only 6 boxes and 7 objects By Pigonhole
principle, two of the selected numbers will be arranged to the same
box, hence there sum will be 13.

(if). Two numbers are said to be relatively primeif their G.C.D is 1.

We form 6 different boxes containing two integers form 1-12
such that they are respectively prime as follows,

(1,2 (7,8}
(3,4} {9, 10}
{5, 6} {11, 12}

Since each set contains consecutive integers.
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=~ They are relatively prime each of these 7 integers will be
assigned to the set that contain it these 6 sets are boxesand 7
integers are chosen from 1-12 are objects.

Since there are only 6 boxes and 7 objects 6 < 7.

By pigeonhole principle selected numbers will be arranged to
the same box that is their exists two numbers which are relatively
prime.

(iii). Let Aq, Agyenvvinnnnnn. A~ be seven chosen numbers from 1-12.
We known that any integers n can be written in the form n =
2*m where k > 0 km. is an odd number.

1=2%.1
2-2t.1
3=20.3
4=2°1
5=20.5
6=2'3
7=20.7

Xjisanoddinteger................. I=1,2,. i, 7.

Elﬁlch g Is assigned to the odd integer x; where x; is such that a =
2°.5.

Where k> 0.

Corresponding to u chosen integer &, a,.......... ,& we have 7 odd
integers.

PCTD T X7 but we have only 6 odd integers from 1-12.

=By Pigonhole principle &'’ s corresponding to the same x;.

i.e7i ,j suchthat | = |
1<i=7
1{_:j “:_:7 and x; = X
a= th.xi
g=2"X
a=2".x [xi = xj]
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if xi= xj then 2%,0.
_ 2"1?/
= /oA,
A
3

aisamultiple of &

if x,2x; then 2° /s

_ 2"1?/
- 2kixi
_ EV

g

gisamultipleof a.

There for their exist two integers such that one is a multiple of
another.

Example 8.Show that in any set of 12 integers there are 2 whose
differenceisdivisible by 11.

Solution :-

Let Ay, Agpevviiiieienns A1, be 12 selected integers by division
algorithm, 7 unique g; and r;.
st. Aj= g+ r, where O=r; <11

i.e. 0=r;=10

each ¢ isassigned to its remainder r;.

AL A A1, correspondsto ry, ro,.eeeveennenn. r» but use
have only 11

Remainders{0,1,2,............... ,10}

When ano. isdivided by 11

~The remainders are 12 i.e. o .ceiiieinnnn.... r, but possble
remainders are 11.

.e01,..coiinin. 11

=By Pigonhole principle, two remainders are samei.e. , |

sti=], r=r 1512,
1<j<12
a=1l1g+r;
g=11q +1;
=11g+n (i=n)
e 11, o
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~two whose differenceisdivisible by 11.

Two whose difference is a multiple of 11.

7.3 THE EXTENDED PIGEONHOLE PRINCIPLE

If there n-pigeons are assigned to m-pigeonholes, then one of the

-1
pigeonhole must contain at least [(n—m)} +1 pigeons.

(n-9)

Proof: If each contain number more then {—} pigeons, then there
m

are at most [(nr;l)}g m(nr; ) n-1

A pigeon in al this contradicts our assumption. So one of the

-1
pigeonholes must contain at least [%} +1 pigeons.

Example 9: Show that if 30 dictionaries in a library contains a total of
61,327 pages, then one of the dictionaries must have at least 2045 pages.

Solution: Let the pages be the pigeons and the dictionaries are the
pigeonholes. Assigns each to the dictionaries in which it appears then by
the extended pigeonhole principle are dictionary must contain at least

[%}le@”: 2045 pages.

Example 10: Show that if any 29 people are selected then one may choose
subset of 5. So that all 5 were born on the same day of the week.

Solution: Assign each person to the day of week on which he and she was
born. Then n=29 persons are being assigned to m=7 pigeonholes. By
the extended pigeonholes principle at least

[(”_r;l)}lz [(29—7_1)}1:?“: 5 persons.

There fore 5 persons must have been born on the same day of the week.

Check Your Progress:

1. Show that if there are seven numbers from 1 to 12 are chosen
then two of them will add to 13.
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Let T be an equilateral triangle whose sides has length 1 unit.
Show that if any five point are chosen lying on inside T. Then

two of them will be more then % unit apart.

Show that if any Eight positive integer are chosen two of them
will have the same remainder when divided by 7.

Show that if seven colors are used to paint 50 bicycles at least
eight bicycles must have the same colors.

All 82 entering student of a certain high school take courses in
English, History, Maths and science. If three section of each of
these four subjects. Show that there are two students that have all
four classes together.

Nineteen points are chosen inside a regular hexagon whose side
length 1. Prove that two of these points may be chosen whose

distancethemis Ieﬁstheni )

J3
In any group of 15 people there are at least three born on the
same day of the week?

74LET USSUM UP

In this chapter we have covered the following points:
If m<n then there cannot be an injection from N, toN .

Pigeon hole Principle.

Extended Pigeonhole Principle and Application of pigeon hole
principle.

7.5UNIT END EXERCISES

1.

Prove that, if m<n then there cannot be an injection from N
toN

m*

Write the statement of pigeon hole principle and explain with
example.

10 people want to go to the movies, and there are only 7 cars,
then at least more then one person in the same car.

Prove that among the 51 positive integers less then 100. Thereis
apair whose sumis 100.
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. There are 33 students in the class and sum of their ages 430 year.
Is it true that one can find 20 students in the class such that sum
of their ages greater 260?

. Show that in any set X of people, there are two members of X
who have the same number of friendsin X.

. Seven darts are thrown onto a circular dartboard of radius
10units. Can we show that there will always be two darts which
are at most 10 units apart?

. Nineteen darts are thrown onto a dartboard which is shaped
as a regular hexagon with side length of 1 unit. Can we prove

V3

that there are two darts within 3 units of each other?

. How many friends must you have to guarantee that at least
five of them will have birthdays in the same month?

10. Show that there must be at least 90 ways to choose six numbers

from 1 to 15 so that al the choices have the same sum.
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GRAPH THEORY-I

Unit Structure:

8.0 Objectives

8.1 Introduction

8.2 Application of graphs

8.3 Basic definitions and types of graphs
8.4 Subgraphs and Isomorphisms

8.5 Operations on graph

8.6 Letussumup

8.7 References

8.0 OBJECTIVES

e Fundamental concepts of graphs

e Typesof graphs

e Isomorphism of graphs

e Concept of connectednessin graph

8.1 INTRODUCTION

Graph theory is a subject where no previous knowledge is
assumed. In this subject the focus is on understanding the structure
of graphs and the techniques used to analyse problems in Graph
theory. This subject have many applications in different areas right
from computing to social sciences and to natural sciences. One of
the standard ways of maintaining a graph in the memory of computer
is by means of its adjacency matrix. In simple words a graph is
collection of points and a collection of pairs of points (edges). Some
of the graphslook like.

S

Fig. 8.1
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8.2 APPLICATION OF GRAPHS

A graph can be used to represent almost any physical
situation involving discrete objects and relationship among them.
Some of examples given below are from among hundreds of
application.

1. Konigsberg Bridge Problem :-

This exciting problem is said to have given birth to graph
theory. The city of Konigsberg is located on the Pregel river in
Prussia. The city occupied the island of Kneiphopf (A) plus areas on
both banks. These regions were linked by seven bridges as shown
below in Fig 8.2 (a). The citizens of Konigsberg had a problem to
start from their home, cross every bridge exactly once and return
home. This problem was represented using dots for land masses and
curvesfor bridges Fig. 8.2 (b).

Fig. 8.2 (a)
The bridges of Konigsberg
C
A B
D
Fig. 8.2 (b)

Graphical representation of Konigsberg bridge problem

Euler first represented this situation by means of graph and proved
that the solution for this problem does not exist using Eulerian

graphs.
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2. Travelling salesman problem :-

This problem is stated as follows : A salesman is required to
visit a number of cities during atrip. Given the distance between the
cities, in what order should he travel so that he travels as minimum
as possible?

In the graph theory, the cities are represented by vertices and
the roads by edges. There is a real number associated with each
edge ej inagraph. Such agraph is called weighted graph. w(ej)is
weight of edge € .

This problem amounts to finding minimum weight
Hamiltonian circuit in a weighted Hamiltonians graph. No efficient
algorithm for solving this problem is known. However, it is possible
to obtain reasonably good but not necessarily optimal solution.

3. Four colour problem :-

The four colour problem is a partitioning problem.
Partitioning is applicable in many practical problems such as coding
theory, partitioning of logic in digital computers and state reduction
of sequential machines.

This problem is related to colouring of a map. A map is a
partition of the plane into connected region. Can we colour the
regions of given map using atmost four colours so that neighbouring
regions have different colours?

In graph theory, the vertex is considered as a region and an
edge represents regions sharing a boundary. The problem is whether
the resulting graph have chromatic number atmost 4. A graph can be
drawn in a plane without crossing edges, such graphs are planar

graphs.

The four colour problem was posed in 1852 and was settled
by Appel and Haken in 1972. A computer free proof of this problem
isstill to be found.
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8.3 BASIC DEFINITIONS AND TYPES OF GRAPH :

The Fig. 8.3. Shows some of the graphs.

V1
1 o Vs
eq .
V5 °
[ V3
Vo e '\,3 V4'
Fig. 8.3.1(a) Fig. 8.3.1 (b) Fig. 8.3.1(c)

In Fig. 8.3.1 (a) there are points vq,v,,v3 and the line
segments e, e,. Line segment e, joins points v;and v, whileline
segment e, joins points v, and vs.

In Fig. 8.3.1 (b) point v, is joined to itself by a loop e,.
There are multiple line segments between points v;and v;. In Fig.
8.3.1(c). There are no line segments but the points vy, v,, v3, Vg4, Vs.

All the above figures are the examples of graphs. Each graph
consists of certain number of points called vertices and some pairs of
points joined by line segments which are called as edges.

8.3.1 Definition : Graph, order and size of graph

A graph G isapair (V, E) where V is nonempty finite set of
vertices and E is family of unordered pairs of elements of V called
edges. V is vertex set of G, E is edge set of G. The number of
elementsinV is called order of G. It is denoted by [V|. The number
of edgesin graph G is caled size of G and denoted by |E|.

InFig.8.3.1(a), V={vy, vy, v3}, E={ey, &}, V|=3& [E|=2.

InFig.83.1(b), V={vy, vy, v3}, E={@y, &, €3, &}, V| = 3 and
[E|=4

In F|g 831 (C), V:{Vl, Vo, V3, Vg, V5}, E:ﬂ(empty), I\/l =5
and |E|=0



127
8.3.2 Definition : Simple graph, Multigraph, Directed graph
A simple graph G (V, E) consists of V, a nonempty set of

vertices and E, a set of unordered pairs of distinct elements of V
called edges. Fig. 8.3.2 (a).

A multigraph G(V, E) consists of set V of vertices, a set E of
edges including multiple edges and loops. Fig. 8.3.2 (b).

A directed graph G(V, E) consists of V, nonempty set of
vertices and E which is family of ordered pairs of elements of V
which are directed edges. Fig. 8.3.2 (c).

AN
4 Z
~

Fig. 8.3.2 (a) Fig. 8.3.2 (b) Fig. 8.3.2(c)
Simple Graph Multiple Graph Directed Graph

8.3.3 Definition : Incidence, Adjacent, Degree, Pendant vertex

See the Fig. 8.3.1 (a) the edge e; joins vertices v, and v,.
The vertices v; and v, are called end vertices of edge g;. The edge
e; is said to be incident on vertex v, and vertex v,. The vertices
v; and v, are adjacent vertices. Thus, two vertices are said to be

adjacent if they are the end vertices of the same edge. Similarly, two
nonparallel edges are said to be adjacent if they are incident on a
common vertex. InFig. 8.3.1 (a), e;and e, are adjacent edges.

e The number of edges incident on vertex v, with self loop counted
twice is called degree, d(v), of vertex v. In Fig. 8.3.1(a)
d(V2) =2. In F|g 831(b) d(Vz) =3.

e The vertex having no incident edge is called an isolated vertex.
Isolated vertices are vertices with zero degree. A graph with all
isolated verticesis called null graph. Fig.8.3.1 ().

e The vertex of degree one is called pendant vertex. In Fig.
8.3.1(a), vertices viand v3 are pendant vertices.
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Theorem 8.3.1:

The Handshaking Theorem

The sum of degrees of all vertices in graph G is twice the number of
edgesin G.

Proof :-
Let G be a graph with e edges and n vertices vq,v,,...,v,,. TO show
n
that > d(v;)=2e - (3.1
i=1

Each edge contributes two degrees to the sum of degree of
vertices as each edge is incident with exactly two vertices. This
means that the sum of degrees of the vertices is twice the number of
edges. A loop at avertex also counted twice.

n
ThUS, Zd(Vi ) =2e
i=1

For example consider the graph in fig. 8.3.3

Fig. 8.3.3

d(v1) +d(v2) +d(vg) +d(va)
=2+2+3+1=8=2 x 4 =twicethe number of edges.

Theorem 8.3.2:
The number of vertices of odd degree in agraph is always even.

Proof :-
Consider the vertices of odd degrees and even degrees separately.

n

The sum of degrees of all vertices is even i.e. > d(v;)=2e, in a
i=1

graph G with n vertices vq,vs,...,v, and number of edges e.

AISO,%d(vi)=O%jd(vi)+ > d(vk) —(3.2)
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The left side of equation 3.2 is expressed as sum of two sums,
each sum taken over vertices of odd and even degrees respectively.

n
Since ) d(v;j)=2e and the second expression on right hand
i=1
sidei.e. > d(vy)= 2s, bothareeven,
even (say)

weget > d(vj)=2e- > d(vy)

odd even
=2e-2s
=2(e-9
i.e. > d(v;)=aneven number —(3.3)
odd

Thus, because of equation 3.3, each d(v;) is odd.

The tota number of terms in the sum must be even, to make
the sum an even number. Hence the theorem.

Types of Graphs
(a) Complete Graphs:

A simple graph in which every pair of distinct vertices is
adjacent is called a complete graph. Denote complete graph on n-

verticesby k,,.

Note:
1) In K,, every vertex is adjacent to all the remaining (n — 1)

vertices.
2) Thedegree of each vertex of K, isn—1.
Some examples of complete graphs.

SRVANZS

K1

Fig. 8.3.4.1 complete graphs
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(b) Regular Graphs:

If all the verticesin a graph G are of the same degree, then G
is called regular graph. If degree of each vertex is‘n’ then G is said
to beregular of degree ‘n’.

Remark :
(1) All the complete graphs are regular.
(2) A regular graph of degree 3 isknown as cubic graph.

The graph of Fig.8.3.4.2 is Petersen’s graph. In this graph
there are ten vertices and degree of each vertex is 3. It is aso an
example of cubic graph.

Fig. 8.3.4.2 Peter sen’s Graph

(c) Bipartite Graph: If the vertex set V of a graph G can be
partitioned into two digjoint subjects say V;and V, such that any

edge in G joins a vertex of V; to avertex of V,, then G is called
bipartite graph.

a
a < c
f b
e C
d b d ‘

(@) (b)
Here V; ={a,c, €} Here V; ={a,c, €}
V, ={b,d,f} V, ={b,d,f}

Fig. 8.3.4.3 Bipartite Graphs
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Remark :

(1) In bipartite graph, it is not necessary that every vertex in Vjis
adjacent with every vertex inV,. But if it is so and G is simple

graph then G is called complete bipartite graph. A complete
bipartite graph is denoted by Km,n where |V;| = m and |V,|=n.

(2) Km,n has mn edges as each vertex in v, joins every vertex in
V,. TheFig. 7.3.4.3 shows K3 3 graph.

(3) The graph K ,is known as star. For example, Fig. 7.3.4.4 is

Star Graph K; 7.

Fig. 8344
Star Graph; Kq 7

Check your progress:
1. Draw all simple graphs on one, two, three and four vertices.

2. Describethe graph G inthediagram i.e.
i) Findvertex set V(G) and |[V(G)|
ii) Find edge set E(G) and |[E(G)|
iii) Find the degree of each vertex.
iv) Verify Handshaking theorem for given graphs.

AN
<]

(@ (b)

3. Draw a simple graph, multiple graph and directed graph on seven
vertices.

4. Show that number of odd degree vertices in a graph is aways
even.
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5. Consider the graph in following diagram.

Find (i)  end verticesof edges e, e, 3

i) edgeincident on vertices v;and v,, vyand vs, v, and vs
iii) pair of adjacent vertices (any three)

iv) pair of adjacent edges (any three)

V) isolated vertices

vi) pendant vertices

6. Draw following graphs

i) Ky

i) Kg

iii) Regular graph of degree three
iv) Petersen’s graph

V) Koz

Vi) Kz 3

7. Justify whether the following statements are True or False.

i) A circlewith radius one and centre at origin is a graph.

i) In a simple graph on ‘p’ vertices the degree of each vertex is
atmost P_-

iii) There does not exist a graph on give vertices whose degrees are

4,1,2,2, 3.

iv) The number of vertices of odd degreeis odd.

V) There does not exist a complete graph on n (n > 2) vertices which
is bipartite graph.

8.4 SUBGRAPHS AND | SOM ORPHISM

A) Subgraphs
8.4.1 Definition :

A graph H is called a subgraph of agraph G if all the vertices
and the edges of H are also vertices and edges of G. In other words,
V(H) c V(G) and E(G) c E(H) .
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For example,

Consider Petersen’s graph P given in Fig. 8.3.4.2. The following
graphs B, P,, Py are subgraphs of P.

Ve Y I y / V2 v
V. 6 v
10 N’lo v, 5. o 2
V5 y
9 V,
V9 / 8\ . Y
Ve Vi 3 Vg
Py P> P3
Fig. 8.4.1

Subgraphs of Petersen’s Graph

The graph Ryis not a subgraph of P as shown in Fig. 8.4.2
because the edge set of R, isnot contained in E(P).

Fig. 8.4.2
Graph which not subgraph of Petersen’s Graph

Note : Subgraph of bipartite graph is bipartite, because all the edges
in the subgraph are edges of original graph.

8.4.2 Definition :

A subgraph H of a graph G is called spanning subgraph of G if H
contains all the vertices of G. In other words V(G) =V (H).

Let G be a graph as shown in Fig. 8.4.3, then graphs Hq,H,, Hz0f
Fig. 8.4.4 are spanning subgraphs of G.



Vo
V3 V4
G
Fig. 8.4.3
V1
V5 v, v Vg
Y, 5 1
/C VZ/\O v,0 I CO
V.
2 V3 “ V3'/°V4 V3 V!
Hy H» Hs
Fig. 8.4.4

Spanning subgraphs
8.4.3 Definition :
Let G be graph with vertex set V. Let any set S be subset of V, the

induced subgraph <S> is defined as the maximal subgraph of G with
vertex set S.

Note: Thereis no subgraph of G with vertex set S that contains <S>
properly.

Example:

1) Consider Petersen’s graph P in Fig.8.3.4.2 and its subgraphs
shown in fig. 8.4.1. In this case R is subgraph of P induced by

S = {Vg,V7,Vg,Vg,Vip}i.e. R =<S>. Note that P, is not an
induced subgraph of G.

2) Consider Fig. 8.4.5 (a). If wetake S={vy,v,,v4} then<S> = H,

is not induced subgraph because the graph has vertex set S but
Hq g H,i.e. Hiis not a maximal subgraph of G with vertex set S.

Thus, H, isinduced subgraph of G.
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Vi
V1 V1
Vs % Y
G Vo \ a2

V3

(@ Hy (b) Hy (©)

Fig. 8.4.5
Induced subgraph

B) Isomorphismsof Graphs
8.4.4 Definition :

Two graphs G; and G, are said to be isomorphic if there
exists a one-one and onto map T:V(G;)—>V(G,) such that if
vy, Vo €V(Gy), then the number of edges joining v,and v, is aso
the same as the number of edgesjoining T(v;) and T(v5).

Note that isomorphism of two graphs preserves adjacency and non-
adjacency of any two vertices.

Example:
Consider following two graphs G; and G,in Fig. 7.4.6.

V3
Vi V2 \

v V4
V3 5

\Y/
5 V4 V2 V. 1

Fig. 8.4.6
| somor phic graphs

Define amap from V(G,) to V(G,)asfollows: vy uy, vy Uy,
V3> Uz, V4> Uy, Vs> Ug. Thismap isan isomorphism. G; and
G, are isomorphic graphs.
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Remarks:

Two isomorphic graphs have the same number of vertices,
same number of edges and also same number of vertices of given
degree. However, these conditions are only necessary not sufficient.
For example, consider graphs G; and G, givenin fig. 7.4.7. They

have same number of vertices, same number of edges and also each
of them have exactly one vertex of degree three and four, two
vertices of degree two and five vertices of degree one. Y et, they are
not isomorphic because under the isomorphism, v,and vg are not

adjacent in G; where as in Gy, usand ugare adjacent.
d(v,) =3 andd(uy) =3
d(vs) =3and d(us) = 3 Thus, vg - Uy and Vg - Ug

V
/ 8 / Ve
Vq @ 2 v .
. Vz\ b K "5\ .
V,

/UG
N,

7

<

u

:GZ

(631

/ 8

1 u
u, us u\

Ug

Fir. 8.4.7 Non-isomor phic Graphs
C) Matrix representation of Graphs
Graphs can aso be represented by matrices. This method is

most suitable for computer processing. The two representations of
graphs using matrix is by incidence matrix and adjacency matrix.

8.4.5 Definition : Incidence matrix
Consider graph G without loops. Let V ={vy,v5,..vp,}and

E={e,e,,...e,} Definem x n matrix |(G) asfollows:
I(G) = [aij]m><n

whereaij = 1, if S isincident at v;
= 0, otherwise
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Example of incidence matrix :

Consider graphs and its incidence matrix, in Fig. 8.4.8

11 3 . & & e e e
A
e, e vi[1 0 1 0 1 ]
e Vo1 1 0 1 0
V) - vs I(G)=vg/0 1 0 0 1
2 V0 0 1 1 0
G I J
€1 €638
Vi1 1100
I(H=v,/0 111
v3|1 011

Fig. 8.4.8 Incidence matrix

Note:
1) Incidence matrix is defined for graphs without |oops.

2) All entriesin incidence matrix is ‘zero’ or ‘one’. Such matrix is
called binary matrix.

3) There are exactly two onesin each column.

4) The sum of the entries in any row is the degree of the
corresponding vertex.

5) A row corresponding to a vertex of degree zero contains all
Zeros.

6) Two graphs G; and G, are isomorphic if and only if their
incidence matrices 1(Gy)and 1(G,) differ only by permutation
of itsrows and columns.

8.4.6 Definition : Adjacency matrix

Let G be a graph with n vertices, say {vq,v,,...v,}and not
having multiple edges. Then the matrix A(G) =| x;j |of order n x n,



138

called the adjacency matrix of G is defined as the matrix whose ij"
entry isgiven by,

X;; =1, if thereis an edgejoining i and j"" vertices.
=0, otherwise

Example of Adjacency matrix:

Consider graphs and their adjacency matrix, in Fig 8.4.9

v 1 Vl V2 V3 V4 V5
5 o Vo - _
vif0O 0O O O O
v,/ 0 0 1 1 0
v AG)=v30 1 1 1 1
vy Vg0 1 1 0 1
G vs/0 0 1 1 0 |
a b
abcd
a0 1 0 O
bj1 0 1 1
A(H) =
c/lO 1 0 1
d C
do 1 1 0
H
Fig. 8.4.9 Adjacency matrix
Note:

1) Adjancency matrix is a symmetric square matrix with entries
either zero or one.

2) If G has no loops then the sum of the entries along any row or
any column is the degree of the corresponding vertex.

3) If G; and G,are graphs without multiple edges then G; is
isomorphic to G,if and only if A(G;) can be obtained from
A(G,) by applying permutation of rows and of corresponding
columns.
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Check your progress
1. Draw abipartite graph whose subgraph is bipartite.

2. Draw any two spanning subgraphs of following graphs.
V1 V2 v3
. R . .
6%5
A \75 :/4 V5
(@ (b)

3. Draw any two induced subgraphs of the graphs given in
Exercise 2.

4. Give any two examples of non-isomorphic graphs.

5. Prove that following graphs are not isomorphic.

AR &

6. Determine whether given pair of graphs are isomorphic. If not,
then justify. If isomorphic then show mapping.

{1 Y

b’ AN
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7. Show that there are four non-isomorphic simple graphs on three
vertices.

8. Draw graphs corresponding to following incidence matrix.

el e2 e3 e4
N viii1 1 0 O
v2i0 1 1 1
v3]1 0 1 1
abcd ef gh
vi[0 0O 0O1 01 0 O]
Vo0 0 0 0 1 1 1 1
i) vzl 0 0 0 0 0O 0 0 1
Vyf1 11 01 0 00O
vs 0 0 1 1 0 0 10
v/ 1 1. 0 0 0 0O O O |

10. Draw Graph with given adjacency matrix.

0011
010
. .. 0010
) 101 i)
1101
010
1110
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11. Represent given graphs using adjacency matrix.

12. Justify whether following statements are true or false.
i) There are eleven non-isomorphic simple graphs on four vertices.

i) Let H be subgraph of G. If u.v are non adjacent verticesin H then
they are also non-adjacent in G.

i) If H isinduced subgraph of G and if two vertices are not adjacent
in H then they are also not adjacent in G.

iv) Subgraph of subgraph of G isasubgraph of G.

V) Aninduced spanning subgraph of G is G itself.

vi) Adjacency matrix is symmetric square matrix.

vii)  Incidence matrix is defined for graphs with loops.

viii) A row corresponding to a vertex of degree zero in incidence
matrix contains all non zero entries.

8.5 OPERATIONS ON GRAPHS

8.5.1 Removal of vertex or edge

Let G be a graph with V ={v;,v;,..,v,}. The removal of

vertex v; resultsin asubgraph G' of G consisting of all vertices of G
except v; and all edges of G which are not incident with v;.

G' = G-v; ismaximal subgraph of G with vertex set,

Example:

Consider the graphs G-v,and G-v3 obtained by removing vertex
v, and vertex vsrespectively in Fig. 7.5.1.



v e Vo
1 3 v2
V.
&4 2 Vi / \
1l )% % V6
V
e V3 €6 Va 3 °
7 vV VAR
V5 5 5 Va
G G- V4 G- V3

FIG. 8.5.1(a) Removal of vertex

If E(G) = {e},ey,...6} then removal of an edge say e; from

G results in graph G' where V(G)=V(G') and E(G') contains all
edges of G except e;.

Example:

G-e3 and G-e, are two graphs obtained by deleting edge e; and
edge e respectively from graph G givenin Fig. 8.5.1.

V1 V.
2 & v es v
el]) e2 ‘85\ V6 .
e|)e eg Y6
/ V3 % Y
e,

G- €3 G- €4
Fig. 8.5.1(b) Removal of edge

Note: When a vertex is removed or deleted all edges incident on
that vertex is removed but when a edge is removed we do not
remove vertices incident at that edge.

8.5.2 Complement of a graph

Let G =(V(G),E(G)), then complement of G is graph G with
vertex set V(G) where in two vertices are adjacent if and only if they
are not adjacent in G.
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Example:

See Fig. 8.5.2(a) for graph G and its complement.

Vi
V5
V5
V.
o 3
4 V3 V4

\Y)

G G: Complement of G
Fig. 8.5.2(a) Complement of a graphs

A graph G is self complementary if it is isomorphic to its
complement G as shown in Fig. 8.5.2(b).

V1
V1
V. V2
> V5 %‘ Vo
\Y;
V4 V3 4 \' 3

G G

Fig. 8.5.2(b) Self complementary Graphs

G and G in Fig. 8.5.2(b) are isomorphic under the map
V1 V1, Vo = V3, V5> Vg, V3= Vg, Vg V).

8.5.3 Union of two graphs

Let Gy(Vy,Ep) and G,(Vy,Ey) be two graphs. The union
GiUG, of Gy and G, is defined as graph where vertex set is
ViUV, and edge setis E;UE,.
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Example:

Union of two graphsi.e. illustrated in Fig. 7.5.3.

G]_UGZ

Fig. 8.5.3 Union of two graphs

8.5.4 Inter section of two graph

Let Gy(Vy,Ey) and Gy(V,,Ep) be two graphs then the
intersection G;NG, of G; and G, isgraph consisting of only those
vertices and edges which are both in G; and G,.

Example:

Illustration of G, G, is G, asshown inFig. 7.5.3.

G,NG,

Fig. 8.5.4 Intersection of graph
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8.5.5 Ring sum of two graphs

The ring sum of graphs G,(Vy, E;) and G,(V,, Ey) is
consisting of vertex set V;UV, and edges that are either in G, or in
G, but not in both and is denoted by G;®G,.

Example:

Taking G; andG, from Fig. 8.5.3, thering sumG;® G, is

V e V
2
. Uq
e fa f1
fo
u
V
3 62 v4 2

Following is one more example which shows G;NG,, G;UG, and
G1®G,. Fig. 8.5.5(a)

e 6‘2
) - V3
3
€4 e
V4 66 \ 5
Gy Gy
V,
1
f 1
76
e1 fo 3
e V1 )
f
V. 4
2
v, e3 V3
e
3 v,
V- 4
3 eg

G1NGy G UG,
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V1
fl
e2 V6
V2 V3 f4
94 e5
V, ’
Gl (&) Gz

Fig. 8.5.5(a) I nter section, Union and ringsum of two graphs
8.5.6 Fusion and Contraction

A pair of vertices vyand v, in graph G is said to be fused if
the two vertices are replaced by single vertex v such that every edge
that was adjacent to either vyor v,or both is adjacent to the new

vertex v. The fusion does not ater the number of edges in the
graph but number of verticesis reduced by one.

Example:
Fig. 8.5.6.1(b) is graph obtained by fusion of vertices v;and v,in
Fig. 8.5.6.1(a).

V5 V5

V3 Y V3 Yy
(a) (b)
Fig. 8.5.6.1 Fusion of vertices

Contraction of an edge in agraph is obtained by taking an edge with
end vertices u and v, and contracting it. In other words, removing e
and identifying u and v in such a way that the resulting vertex is
incident to those edges (other than €) which were originally incident
touorv.




147
Example:

Fig. 8.5.6.2(b) is a graph obtained by contraction of an edge e in
graph of Fig. 8.5.6.2(a).

(u,v)

Vi

(@ (b)
Fig. 8.5.6.2 Contraction of an edge

8.5.7 Sum of two graphs

Let G;(Vq,Ep) and G,(Vy, Ep) be two graphs where VNV, =&
then sum of G; and G,denoted by G;+G, is defined as graph
whose vertex set is V4UV, and consisting of all edges, which arein
G; and G,, and the edges obtained by joining each vertex of G; to
each vertex of G,.

Example:

Fig. 8.5.7 show thesum G;+G,.

V1 Vl
®
Uq
V.
v Vo v 2
V3 V3
Gy G, G +Go

Fig. 8.5.7 Sum of two graphs
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8.5.8Linegraph

Theline graph L(G) is asimple graph G whose vertices are in
one-one correspondence with the edge of G, two vertices of L(G)
being adjacent if and only if corresponding edges of G are adjacent.

Example:

See Fig. 8.5.8.

€1

2 €,

e

L(G)

Fig. 8.5.8 Line Graph

8.5.9 Cartesian product of Gjand G,

Let Gy(Vy, Ey) and G,(V,,Ep). Then carterian product of
Gy and G,. Gy xG, isgraph with vertex set V specified by putting
uadjacent tov if and only if
) up =vq and u,v, e E, OF

i) Uy =V, and upvq € By

Example:
SeeFig. 8.5.9 . . .
Uq Vi ) Vo Wy
G, G,
(Ug.u,) (Ug.v,) (upw,)
G]_XGZ

Fig. 8.5.8 Cartesian product of graphs
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Remark :

If Vy={u, vy} and V;, ={up,vo,w,} then cartesan product of sets
V1XV2iS

VpxVy = {(ug,Uz), (g V2), (U, W), (Vi Uz), (Va,v2) (v wa)] - The
pointsin V; x V, are verticesof GxG,.

At thisjuncture, let us take a break and do some problems and
check if we have understand the basic concepts of graphs.

Check your progress

1. Consider the graphs given below

4
V3 V4
Gy G,
Draw the graph
i) G1-v2
||) Gl_ V1
i)  Go—vg
iV) Gz—V3
V)  Gi—ey
Vl) Gl_ €3
vii)  Go—eg
viii) Go—ey
2. Draw agraph which is self complementary.
3. Draw complement of graphs given in exercise 7.5.1.

4. Draw the graphs G+ G, if G; and G, aregiven asfollows:
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5. Draw the graph obtained by fusion of vertices v; and v,in
graphs givenin exercise 7.5.1.

6. Draw the graph obtained by contracting the edge ¢, in the
graphs givenin exercise 7.5.1.

7. Let Gy(Vy,Ey) and Gy(Vp,Ep) be two graphs with
Vi ={ug,vi}, E; ={up,vq} while V, ={u,,vo}, Ep; ={up,v,}.
Draw the graph of Cartesian product of G; and G,.

8. Justify whether following statements are True or False.
i) Thering sum of two complete graphsis complete.

i) If G H, K ae smple graphs then
GU(H®K)=(GUH)®(GUK)

iii) The complement of every graph and its line graph are
isomorphic.

iv) Adjacency matrix of simple graph and its complement is
different.

V) Gy and G, isregular if Gy(Vq,Ey), Go(Vo, Ey) aretwo
graphswith |V;|=3, |Ey[=2, |V,|=4 and |E;| =3.

8.6 LET USSUM UP

In this chapter, we have learnt basic concepts of graph theory
to start with. The understanding of graph theory starts with this basic
concepts as vertex, edge, edge set and vertex set. The different
operations on graph lead to a big family of graph. Isomorphism of
graphs tells vs about graphs which are isomorphic.
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GRAPH THEORY-II

Unit Structure:

9.0 Objectives

9.1 Introduction

9.2 Waks, paths and circuits

9.3 Connected and disconnected graphs
9.4 Euler paths and circuits

9.5 Hamiltonian paths and circuits

9.6 Colouring of graphs

9.7 Letussumup

9.8 References

9.0 OBJECTIVES:

After going through this chapter you will be able to:
o find walks, paths and circuit in agraph
e understand Eulerian graphs and circuits
e understand Hamiltonian graphs and circuits
e know about colouring the graphs

9.1INTRODUCTION :

We have seen in earlier chapter, different operation of graphs
and different types of graphs. In this chapter we are actually perform
operation on graphs, so as to get circuit with a particular condition
imposed on the edges and vertices of a graph joining. The edges and
vertices in continuity we get a cycle or circuit. We can colour the
edges and vertices of graph with different colours and can also find
minimum number of colours required to colour a graph.
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9.2 WALKS, PATHSAND CIRCUITS

Consider the following graphs.

Gy G, Gs
Gy Gs
Fig. 9.1

In Fig. 9.1, observe graphs G; and G3. We can travel from
one vertex to another just by traversing the edges. This is not
possible in case of the graphs G,, G,, Gg as there is some vertex

from which the edge is not there to another vertex. At this stage we
are in position to make some more definitions.

Definition 9.1 :

A wak in a graph is defined as a finite alternating sequence of
vertices and edges, beginning and ending with vertices such that
each edge is incident with the vertices preceding and following it
and occurs exactly once.

Definition 9.2 :

The vertices at the beginning and at the ending of a walk are called
terminal vertices. Wherever termina vertices are same, we call the
walk as aclosed walk. A open walk is one which is not closed.

Definition 9.3 :

A open walk in which no vertex is repeated is called a path.
Definition 9.4 :

A closed walk in which no vertex is repeated is called a circuit or a
cycle.
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Definition 9.5:

The number of edgesin awalk is caled the length of the walk.

Let usillustrate all the definitions from 9.1 to 9.5 with help of graph
inFig. 9.2.

Vv Vv
2 Ve €10 | 4
o €11
5
p
V5

Fig. 9.2 A closed walk
An open walk :

V7E€3V1€ Vi€ Voes V51V Vg€sVa. This is not a path as
vertex v; and v, arerepeated. The length of thewalk is7.

Theclosed walk :
V7 €7 Vg €3 V7 €5V3€9 V€0 Vg €4 Vo e Vie3Vv7. The length of this
walk is8. Thisisnot acircuit asvertex vg and v, are repeated.

Thepath :
Vs €11 V4 €19 Vg €7 V7 €5 V3. Length of the path is 4.

Thecircuit or cycle:
V7 €7 Vg €0 Va4 €9 V3 € V7. Thelength of cycleis4.

Lemma9.1:

Every uv walk contain uv path. u and v are terminal vertices.
Proof : The proof is by induction on the length 7 of auv wak say W.

Step 1:Suppose /=0. It means the length of walk W is zero. It
means W contains single vertex u (=v). This vertex isu v
path of length zero.
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Step 2:Suppose ¢ >1 and the result holds for walks of length less
than 7.

Step 3:1f W has no repeated vertex then its vertices and edges form a
uv path. If W has repeated vertex w then delete all the edges
and vertices appearing between w. This gives a smaller uv
walk say W. W is contained in W.

Aslength of W isless than 7, induction hypothesis holds and
W iscontained in W.

Theorem 9.2:

Let G be a graph with adjacency matrix A. V(G)={vy,vp,... v}
then the number of different paths of length r from v; to v;, wherer

is positive integer equalstoij™ entry of A",

Example 1:

Find the number of paths from a to c for the graph in Fig. 8.3 of
length 3.

Fig. 9.3

Solution : Adjacency matrix A corresponding to graphin Fig. 9.3 is

abcde
_ _ 01 2 45

al0 0 011
1 2 456

bjO 01 1 1 3

then A°=(2 4 2 2 4

A=c/l0 1 0 0 1
4 5 2 01

di1 1 000
56 41 2
efl1 11 00 - -

Wefind A3 aswe want to find path of length 3.
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Number of paths between vertices aand c is the (1, 3)™ entry of AS.
(1, 3)" entry of A3 istwo.
.". The paths of length 3 between the vertices aand c are two.
Check your progress

1) List al the different paths between vertices 5 and 6 in following
Figure 8.4. Give the length of each path.

Fig. 9.4

2) List atleast four cyclesin graph givenin Fig. 8.4.
3) Show that every uv-walk contains a uv-path.

4) Find the number of paths from vertex 1 to 3 for the graph in
Fig. 9.5 of length 3.

3
Fig. 9.5
5) Judge whether true or false.
1) Any uv-walk contains a uv-path.
2) Theunion of any two distinct uv-walks contains a circuit.
3) The union of any two distinct uv-path contains a circuit.

6) List al the pathsthat begin at vertex 2 in Fig. 8.4.
7) List al the circuits that begin at vertex 3 in Fig. 8.5.

8) Inthefollowing graph



Fig. 9.6

i) Listall paths of length 2 starting from vertex 2 and 5.
i) Findthecycleat vertex 7 & 4.

iii) List al paths of length 1.

iv) List al paths of length 3.

9.3 CONNECTED AND DISCONNECTED GRAPHS

A graph is connected if we can reach any vertex from any
other vertex by traversing along the edges. As seen in Fig. 8.1 G;

and Gz are connected while G,,G4,Gs are disconnected. A
disconnected graph consists of two or more connected graphs. Each

of connected parts in disconnected graph is the component of the
graph. More formally let us give definition of all these.
Definition 9.6:

A graph G with u,ve V(G) is said to be connected if G has a
uv path otherwise G is said to be disconnected.

Definition 9.7 :
A disconnected graph is not asingle piece. Each single piece
in a disconnected graph is called a component. A component is

maximal connected subgraph of given disconnected graph. For
example, in Fig.9.1, G,has two components.

Hl: H2: \
and

G4 hastwo components say K; and K,
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Kyt Ky: @

Gs, has five components each having a single vertex.

Theorem 9.3:

A graph G is connected if and only if given any pair u, v of
distinct vertices, thereisapath fromutovinG.

Proof :Let G be disconnected. Then G is expressed as a digoint
union of subgraphs. Choose two vertices u and v which
belong to two of these different subgraphs say G; and G,.

Since G is union of mutualy digoint subgraphs, we cannot
find an edge which is incident to vertices in G; and G,.

Hence we cannot find a path from u to v. This is a
contradiction. G, therefore cannot be expressed as union of
mutually digoint subgraphs.

.. G is connected.

Conversely, assume that G is connected and there are two
vertices in G such that there is no path between them. Let u
& Vv be these vertices. Denote by G; the induced subgraph

formed by all those vertices w of G such that there is uw path
in G. Let G,denote the complement of G;. Then G isunion

of these two mutually digoint subgraphs i.e. G is
disconnected. Thisis contradiction. Hence we cannot find a
pair of vertices such that there is no path between them.

Theorem 9.4:

Let G be a simple graph on n vertices. If G has k —
components then the number q of edges of G satisfies the inequality,

(n-k)gqgé(n-k)(n-kﬂ)
Check your progress
1) Draw complete graph on seven vertices. Isthis graph connected?

2) Give an example of a regular, connected graph on six vertices
which is not complete.
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3) Construct a graph with 8 vertices 16 edges and degree of each
vertex 4.

4) Judge whether the following are true or false.
i) A graph G is connected if and only if it has exactly one
component.
i) Complement of connected graph is connected.
iii) Subgraph of a connected graph is also connected.
iv) If G is graph on 5 vertices and G has two components then
number of edges of G isatmost 12.

5) Let u and v be any two vertices of a connected graph G. Show
that there exists auv —walk containing all vertices of G.

6) Draw a smple (p, q) graph G to show that G contains unique
circuit iff G isconnected & p=q.

7) Which connected graphs can be both regular and bipartite?

8) Give an example of regular connected graph on six vertices that
is not complete.

9) Give an example of a graph on five vertices with exactly two
components.

10)Give an example of agraph that is regular but not complete, with
each vertex having degree three.

11)Give an example of a graph with seven vertices and exactly three
components.

9.4 EULER GRAPHS:

In this section we consider the task to travel a path using each
edge of the graph exactly once. The problem is to draw a figure
without lifting the pencil from the paper and without retracing aline.

Definition 9.8:

A path containing all the edges in a graph is caled an
Eulerian path.

Example 2:

The figure 8.4.1 shows examples of Eulerian graphs and non
Eulerian graphs.



(a) Eulerian graphs

(b) Non — Eulerian Graphs

Fig.9.4.1
Definition 9.9:

A closed walk containing all the edgesin agraph is called an
Eulerian circuit.

A graph is Eulerian graph, if it has a closed walk containing
all the edges.

In Fig. 9.4.1(a) graph G, is Eulerian because it contains Eulerian
Circuit vy € Vo €, V3 €3V, €4 V5 €5 Vg €5 V1 €7 V5 €8 Vo €9 Vg €10 V1.

In Fig. 9.4.1(a) graph G,is Eulerian because it contains Eulerian
circuit

V1€ Vo € V383V €4 V3 €5 V5 €5 Ve €7 V7 83V, € V380 V7

€1 Vg €2 V1.

Lemma 9.5:

If every vertex of a graph G has degree atleast 2, then G
containsa cycle.
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Theorem 9.6: Characterisation of Eulerian graph :

A connected graph G is Eulerian if and only if every vertex of
G isof even degree.

Corollary 9.7:

Let G be connected with exactly two odd vertices say u and v.
then thereisauv walk in G that contains all edges of G.

Proof :Let G' be the graph obtained from G, by adding an edge
joining u and v. The degree of each vertex in G'is even and
therefore it has Eulerian walk beginning with u and ending

with u. Any Eulerian walk for G' must contain the edge uv.
Otherwise, G itself would be Eulerian and u as well as v will
be of even degree which is a contradiction. Let therefore,
V> U—>V; > Vs —>...—>V; >V, be Eulerian wak of G'.
Then the walk u—v; »v, —...—>v; ->v got by removing edge
uv isrequired uv wak in G.

Remark: As mentioned in 7.2 about application of graphs, the
Konigsberg bridge problem was to find an Eulerian walk in
Eulerian graph. Euler proved that it is impossible to get
Eulerian wak in the given graph. Therefore, there is no
solution to Konigsberg bridge problem.

Next, we give an algorithm that produces an Euler circuit for
a connected graph with no vertices of odd degree.

Definition 9.10:

An edge is called a bridge or cut — edge in a connected graph
if deleting it would create a disconnected graph.

See Fig. 8.4 for an example of a bridge. The edge egis a
bridge. Remove e5to get disconnected graph G- es.
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G G-gg
Fig. 9.4.2 A bridge or cut-edge

Algorithm 9.11 : Fleury’ s algorithm

Let G be an Eulerian graph and v be any vertex of G. Starting
from v, we traverse the edges of G subject to following conditions

1. Erase an edgethat istraversed
2. Erasetheisolated vertices, if any.
3. Traverseabridge only if thereis no other alternative.
The procedure is possible and finaly we arrive at an empty
set. The successive sequence of edges which were removed will
form an Eulerian walk for G.

Example 3: Toillustrate Fleury’s algorithm.

Use Fleury’ s algorithm to construct Euler circuit for the graph
inFig. 9.4.3.

Start with vertex v.

Step 1: Traverse any edge incident at v say e



163

Step 2 : Erase the edge that is traversed. The graph will now look
like this

Step 3: Traversetheedge e,.

Step 4 : Erase edge e, the graph will now be

At vgwe have three choices for edges viz, ez, e5,e9. But edge
gis bridge. Thus, by condition 3 of the agorithm we cannot
traverse this edge.

Step 5: Traverse edge e;.
Step 6 : Erase edge e;. The graph will be

Step 7 : Traverse e, and erase e, to get graph.



o
Ve .
3
e
5
v V,
V] 2

Though e, was bridge but we had no aternative.
Step 8 : Erase vertex vy,.

Step 9: Traverse egand erase es to get the graph.
Vs r_‘ V3
Vv e
Vi % Vo

Step 10 : Traverse egand erase eg to get the graph. Also remove

vertex V2 .
v5 V3
l l €7
Vv
V1

Step 11: Traverse e;, erase e;and remove v, to get,

e
v5 8 V3
\/

Step 12 : Traverse eg, erase eg and remove vyto get
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Step 13: Traverse ey, erase eg and remove vs. The graph left
issingle vertex.

Step 14 : Remove®Vv.

The sequence of edges erased in order were
€1, €2, €3, €4, €5, €,
€7, 6g,€g. Thus we get Eulerian circuit
Vo>V; >V >V4>V3—>Vy, —V;—>Vz—>Vvg—Vv observe that

each edge of G is traversed exactly once. However, the vertex may
be traversed more than once. The graph should remain connected at
every step.

Check your progress

1) Make adjacency and incidence matrix of any one Eulerian graph.
What can you say about them?

2) Draw aEulerian graph on 6-vertices.
3) Which of the following graphs have an Eulerian circuit, an

Eulerian path but not an Eulerian circuit or neither? Give reason
for your choice.

C) f d)
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4) Use Fleury’s algorithm to find an Eulerian path for the following
graphs :

XX A

5) Judge whether the following are true or false.
i) Eulerian graph is connected.
i) K, isEulerian if and only if niseven.
iii) Ky, pisEulerianif and if mand n are even.
iv) Line graph of Eulerian graph is Eulerian.
V) Petersen’s graph is Eulerian graph.

9.5HAMILTONIAN GRAPHS:

We have seen the walks which include all the edges of the
graph. Now we see the graph which contains paths that contain each
vertex of the graph. These graphs were named after Sir William
Rowan Hamilton who introduced such graphs.
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Definition 9.11:

A cycle which passes through each vertex of the graph called
Hamiltonian cycle or circuit. We say Hamiltonian cycle spans the
graph. A Hamiltonian path is a path that contains each vertex
exactly once. A graph having a Hamiltonian cycle is caled
Hamiltonian graph.

Note : Hamiltonian graph contains a closed path that includes all the
vertices of the graph.

Example 4 :

Consider the graphsin Fig. 8.5.1.

1 )
u. . N
5 Yy u,
(@ (b)

Fig. 9.5

The graph of Fig. 9.9.1(a) is Hamiltonian graph. The
Hamiltonian cycleis v; - vy — V3 —> V4 — Vg — Vg —> V.

The graph of Fig. 9.9.1(b) is not Hamiltonian graph.
However, the walk vg — vz — Vv, — v5— vy > Vvyis the path that

includes all the vertices but it is not closed.
Example5:

Any complete graph K,has Hamiltonian cycle. Hence K,is
Hamiltonian graph.

Note: If Gisgraph on n vertices and G has Hamiltonian circuit then
G must have atleast n edges.

Remark :1)It is not always possible to determine a Hamiltonian
path or cycle.
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2)1f there is Hamiltonian path or circuit in a graph then
there is no efficient way found to trace it, unlike,
Eulerian path or cycle.

Some observations of Hamiltonian graphs are as follows :

Theorem 9.8 :

If G is Hamiltonian then for every non empty proper subset S
of V(G), W(G - 9)<|S| where W(H) denotes number of components
of any graph H and |S| denotes number of elements of S.

Proof :Let C be Hamiltonian cycle of G. If Sis any proper non —
empty subset of V(C) = V(G). If G = C, we are through.
Otherwise G can only be C with more edges. But the addition
of edges to C can only decrease the number of components of

C-S.
Therefore, W(G -S)<W(C-S)
i.e. WG-9)<|S]

Remark : The above theorem is useful in showing that some graphs
are non-Hamiltonian. For example, the complete bipartite
graph K, ,where m= nis non-Hamiltonian. Let (V,V,) be
partition of vertex set K, where |Vi|=m. The graph
Km,n-V; is totally disconnected with n — vertices as its
components. Thus, W(Km,n—V;)=n £ m=|V, |

Note: The converse of theorem 7.9.4 is not true. For example, the
Petersen’s graph satisfies the condition of the theorem but is
not Hamiltonian.

Theorem 9.9:
A Hamilton graph contains no cut-vertices.
Theorem 9.10:

Let G be simple graph with n vertices. Supposeaand v is a
pair of non — adjacent vertices such that deg.(v)+deg.(u)>n. Then G
is Hamiltonian. The proof of above two theorems is omitted but
from it we can prove the following :
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Corollary 9.11 :

G has Hamiltonian cycle, if each vertex has degree greater
than or equal to ”2.

Proof :The sum of the degrees of any two vertices of G is
r/2+'12:n. Thus, al conditions of theorem 7.9.6 are

satisfied. Hence, G has Hamiltonian cycle i.e. G is
Hamiltonian graph.
Theorem 9.12:

Let G be a graph with n-edges. Then G has Hamiltonian
cycleif mz%(nz —3n+6) where n is number of vertices of G.

Proof :Suppose u and v are non-adjacent vertices of G.

Let H be the graph obtained by deleting vertices u and v
along with any edges having u or v as end point. Then H has
n— 2 vertices. The number of edges of H is m — deg(u) — deg
(v). [If uand v were adjacent then one edge less will be
removed] The maximum number of edges H could possibly
have is ”‘ZCZ. This happens if there is an edge connecting

every distinct pair of vertices.

Thus, the number of edges of H isatmost "~2C,.

n—2C2: (n—2)! - (n—2)!
2'(n_—2—2)! 2(n—4)!
_ (n=2)(n-3)
2
:—(n2—5n+6)

Therefore, m—deg(u) —deg(v) < %(n2 —5n+6)

— deg(u) +deg(v) = m —% (N2 —5n+6)

Given that m> %(n2 —3n+6)
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Therefore, deg(u)+ deg(v) > %(n2 —3n+6) —%(n2 —5n+6)
= %(n2 —3n+6-n? +5n-6)

(2n)

S NI

The condition of theorem 9.10 is satisfied and G has
Hamiltonian cycle.

Remark : The converse of theorem 9.10 and theorem 8.12 is not
true. Example, consider the graph G in Fig. 9.5.2. V(G)|=n
= 8. Each vertex has degree 2. If u and v are vertices of G
then deg(u) + deg(v) = 4.

Fig.9.5.2

The total number of edgesis 8. The conditionsin the theorem
is not satisfied still we can find a Hamiltonian cyclein G.

Definition 9.12 :

A graph G is called aweighted graph if there is a positive real
number associated with each edge of G. The real number is called
the weight of the corresponding edge. The weight of subgraph H of
aweighted graph is defined as the sum of weights of all edges of H.

Travelling Salesman Problem :

As mentioned in 9.2 about the application of graph, the
traveling salesman problem is to find a minimum weight
Hamiltonian cycle in aweighted Hamiltonian graph.

No efficient algorithm for solving the traveling salesman
problem is known. However, it is possible to obtain a reasonably
good but not necessarily optimal solution. One such method is given
below. First find Hamiltonian cycle G. Then search for another
Hamiltonian cycle of smaller weight as follows :
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Fig. 9.5.3

Let {u, v} and {x,y} be two non adjacent edges in C such that
the vertices u, v, x and y occur in that order in C. See Fig. 8.5.3 If
{ux} and {v,y} are edges and w(u,x)+w(y,v)<w(u,v)+w(x,y)
then replace edges (u,v) and (x,y)in C by edges (u,x)and (v,y).
The resulting cycle C'would be Hamiltonian and will be of less

weight than C. continue above process with C', until one gets
reasonably good Hamiltonian cycle.

Note: Theinitial Hamiltonian cycle itself may be chosen such that it
has comparatively small weight.

Example 6:

Find the Hamiltonian cycle of minima weight for the following
graph 9.5.4.

B
15
12 10
16 C
A 20
D
12 16
G 12

14

F 10 E

Fig. 9.5.4 Hamiltonian circuit

Consider vertex A vertex. Vertices B, G and D are adjacent to
A. w(A,B)=12, w(A,D) = 20 and w(A,G)=12. We have to choose
minimum weight. Let us consider edge AB with weight 12. As we
reach B there are two choices either C or D. Min {w(B,C), w(B,D)}
= w(B,C)=10. So we reach C with w(B,C) = 10. C is adjacent to F
and w(C,F) = 15. At F there are three choices either B, G or E.
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Min{w,(F,B), w(F,G), w(F,E)}
=w(F,E) = 10.

Thus, we take vertex E. So far we have traversed as follows :

A2, 0 ,c B ,r 0 £ FromE wereach D, w(E,D) =
12. From D we have to go to G, as B is already traversed. From G
we reach A back again. Thus, the Hamiltonian cycle of minimal
weight for the graphin Fig 8.5.4 is

12 10 15 10
A > B > C > F > E

The weight of thiscycleis 87 as

w(AB) + w(BC) + w(CF) + w(FE) + w(ED) + w(DG) + w(GA)
= 12+10+15+10+12+16+12
=87

Check your progress

1) Give two Hamiltonian circuits in Kgthat have no edges in

common.
2) Give example of Hamiltonian graph which is not Eulerian.

3) How many distinct Hamiltonian cycles are therein K, and Kg?

4) Show that there are only three Hamiltonian graphs on 6-vertices,
C6’ KG and K3’3.

5) Give one example of an Eulerian graph which is not
Hamiltonian.

6) Justify whether true or false.
i) Every Hamiltonian graph is connected.
i) Aninduced subgraph of Hamiltonian graph is Hamiltonian.

i) A simple graph which is both Hamiltonian and Eulerian is
necessarily acycle.
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7) Which of the following graphs have Hamiltonian circuit, a
Hamiltonian path but no Hamiltonian circuit, or neither. Trace
the circuit if graph has Hamiltonian circuit.

ay )
Y-RPNS
e)/\f)
W

8) Find a minimal weight Hamiltonian circuit for the graphs given
below.

a A B b
2 4 2
3
C 3 D :
2 S A
6
: 6
{ 4
H F
4 5



9.6 COLOURING OF GRAPHS:

Definition 9.13;

Consider agraph G. A vertex colouring or colouring of G is
an assignment of colours to the vertices of G such that adjacent
vertices have different colours.

A graph is said to be k-colourable if the vertices of G are
coloured using atmost k-colours such that adjacent vertices receive
different colours.

The chromatic nhumber denoted by ¥(G)of a graph G is the

minimum number of colours needed to colour G.
Note: If agraphisk-colourablethenitis (k+1) — colourable.

Examples:

1) Kpis p-colourable.As each par of vertices is adjacent.
%(Kp)=p. Consider K, inFig. 8.6.1

Fig. 9.6.1 Chromatic number of K, is4.
1 (Kq)=4

2) Kp is complement of Kp. It is disconnected graph with p
components as vertices. Kp is 1-colourable y(Kp)=1. As

shown in Fig. 8.6.2, K4 is 1-colourable and y(K4)=1.
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Fig. 9.6.2 Chromatic number of K4 isone.

3) Consider bipartite graph K, (Vy, Vo) with m-verticesin V; and
n-vertices in V,. No two vertices of V; and V, are adjacent.
But every vertex of V; is adjacent to each vertex of V,.
Therefore, every vertex of V; can be coloured by colour o and
al vertices of V, can be coloured by colour B. Thus

%(Kmn)=2. Consider K,3asinFig. 9.6.3.

(o) 2 "2 (@)

“1(B) "2 (B) Uz (B)

Fig. 9.6.3: Colouring of K;3
Vi ={v1,Va}; Vo ={ug, Uy, uz}, Chromatic number of K, 3 istwo.

Theorem 9.13: Graph G is 2-colourable iff G is bipartite

4) Consider thegraph Gin Fig. 9.6.4.

Y1 (a)

(B
V
<) >

v5(w)
G

Fig. 9.6.4

Let vertex v; be coloured by colour . Then v, and vg
must receive two distinct colours say B and < different from a.
Now, vertex vy is adjacent to vq, v, and vg. Therefore, it cannot
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have colour o,B,$. Hence vz will receive colour . The vertex
which is to be coloured is v,. v, can receive colour B asit is not
adjacent to v,. Thus, atleast 4 colours are necessary to colour the
graph. Hence y(G)=4.

Definition 9.13 :

A graph is called planar graph if it can be drawn in a plane so
that no two edges of graph cross.

The crossing is said to occur in agraph it two edges meet in a
point which is not a vertex.

The figure 9.6.5 shows an example of planar and non-planar

graph.
v Vo v, Vo
V4 V3 V4 V3
(&) Non-planar Graph (b) Planar Graph
Fig. 9.6.5

In Fig. 9.6.5(a) edges v,v, and vqv3 cross each other. In Fig.

9.6.5(b) two edges wherever they meet they meet only at their end
points. The graphs (a) and (b) are isomorphic.

Theorem 14 : Every planar graph is 6-colourable.
Theorem 15 : (Heawood) Every planar graph is 5-colourable.

Theorem 16 : (four colour theorem) Every planar graph is 4-
colourable.

Note : The proof of theorem 4 was given by computer computations.
A computer free proof of this theorem is still to be found.
Appel and Haken have solved four colour theorem by using
computers.

Application of colouring of graph :

The colouring of graphs were used to solve map-colouring
problem. The colouring of map means to colour each region (or
country or state or province) so that no two distinct regions sharing a
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common border have the same colour. The map-colouring problem
is to find the smallest number of colours used to colour the map.
Each region will be considered as vertex and an edge will be
common boundary shared by two regions. For example, consider
the map given in Fig. 7.10.6 and its graphical representation with
colouring.

NE
(%)
uT CO
uT co (@)
‘s ®)
() KS
AZ NM (v) (3)
AZ NM
(@ Map G (b) Graph of map G
1(G)=4
Fig. 9.6.6

Definition 9.14 :

Given an integer 1> 0, we denote by Pg (L) as the number of
different - colourings of graph G. We cal P5(.) as chromatic

polynomial of G.
Example:

1) Consider simple trivial graph K;. Kj is graph with one vertex.

We can colour K; with any of given Acolour. Therefore,
Re (M ="2.

2) Consider graph K, a graph with two incident vertices u and v.

We can colour vertex u with A colours but v will carry the colour
which is not given to u. So total colourings of v are (A- 1) —
colourings. Thus, tota colourings of K, given by

Re, (M) =2(-1).
3) InGeneral, R (A)=A(h—1) === (A—n+1).

4) Consider theline graph L,as shownin Fig.9.6.7.

vy v, \73 A
Fig. 9.6.7 Linegraph L,
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Suppose there are A - colours. The first vertex can be coloured
by any A colours. The second vertex adjacent to first can be
coloured by any (A1) - colours. 3 vertex can be coloured by any

(L.—1) colours not used for second vertex. Similarly, the 4™ vertex
can be coloured by any (A1) - colours. By multiplication principle

of counting, the total number of colourings is A(L—1)3. Thus,
R, (V) =2a-1°

Theorem 9.17:

Let G1,G,,....,Gk be components of disconnected graph G.
Then Ps (M) =Pg, (1).Pg, (M), .....Pg (1), where R.H.S. is product of
chromatic polynomials of each component.

Example:

Consider graph G in Fig.9.10.8. It has two components each of
whichis K3. The chromatic polynomial of K3 is A(A-1)(A-2).

SR =22 (A-1)2 (A—2)?
G
Fig. 9.6.8
As x(G) =3, the number of distinct ways to colour G using 3

—coloursis Pg(3) = 32(3-1)(3-2)°

= 9(2)%(1)?
= 9x4
=36
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Check your progress

1) Construct a graph for the following maps.

a) 5 b) M EI

S

S T/ U

2) Find the chromatic number for the following graphs.

- [FT <

3) Find the chromatic polynomial P; for the graphs given in
Exercise 2.

4) Determine whether the given graphs are planar? If so, draw it so
that no edges cross.
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c) / d)

5) Find P; and X(G)for the graph drawn in Exercise 1.

6) Give example of a connected graph on five vertices that is (a)
planar (b) not planar.
7) What is X(G) for abipartite graph G? Justify.

8) Judge whether following istrue or false.
i) The chromatic number of any cycleis 2.
i) The chromatic number of bipartite graph is 2.
iii) For each integer p > O there is agraph which is p-colourable.
iv) The chromatic number of Petersen’s graph is 4.
V) Any two graphs with same chromatic number are isomorphic.

9.7LET USSUM UP:

In unit 8, we have seen interesting graphs like Eulerian graphs
and Hamiltonian graphs. We have also leant simple methods to find
Eulerian circuit and Hamiltonian circuit. As colouring of graphs also
is afield where not much work is done, we have tried to learn basic
concepts of colouring a graphs.

9.8 REFERENCES

1. Discrete Mathematical structures by Kolamn, Busby and Ross.
Pearson education.

2. Introduction to graph theory by Douglas B. West.
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10.0 OBJECTIVES

After going through this chapter students will be able to

understand:

Know about tree in graph theory, its properties and
characterisation

Find minimal spanning trees

Know about directed and undirected trees

10.1 INTRODUCTION: :

One of the most important topic in study of Graph Theory is

Trees. Many applications rangeing from family tree to computer
science management tree is dealt with the study of trees.

The first use of trees by German Mathematician Karl Georg

Christian von Staudt was done in 1847 in his work on projective
Geometry and by German physicist Gustav Robert Kirchhoff in the
same year in his paper on electrical networks. The word tree for a
particular graph was first used by Arthur Cayley.
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In this unit we are going to study trees and its properties first.
Then we study labeled trees; spanning trees, rooted and binary trees.
The wide range of application of treesin different field has created a
revolution in study of trees.

A graph of an undirected tree T will have a single line
without arrows. While the edge of directed tree will have arrows
showing the direction of edge.

10.2 CHARACTERISATION OF TREES:

To start with we have to first understand basic definitions
related to trees.

10.2.1 Definition : A connected graph which contains no circuits is
caled atree.

We can aso frame a definition which uses set theory notation.
Let A beasetand T berelation on A then we say that T is atree if
there is a vertex vq in A with the property that there exists a unique

path in T from v, to every other vertex in A but no path from v
to Vo-

Remark : Treeisaconnected acyclic graph.

Some examples of treesisgivenin figure 10.2.1.

(@) (b) (© (d)

Fig. 10.2.1
10.2.2 Propertiesof Trees

Let T be agraph on n vertices then —

1. Thereisone and only one path between every pair of verticesin
atree.

2. T hasnverticesand n — 1 edges.
3. Tisconnected and has n — 1 edges.
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T is connected and every edge is cut-edge.
T isminimally connected graph.
T has n-vertices, n — 1 edges and no circuits.

N o g &

Inatreewith n> 2, there are atleast two vertices of degree one.

10.2.3 Definition : A pendant vertex is defined as a vertex of degree
one.

Example : In the graph given below in Fig. 9.2.2 v is the pendant
vertex. There are more than one, pendant vertex in any tree.

Fig. 10.2.2

10.2.4 Definition : The initial vertex vy considered when we start

drawing a tree is called root vertex. A tree in which there is root
vertex is called rooted tree. In rooted tree the root vertex is clearly
distinguished from remaining vertices. Denote tree T with root
vertex vg as (T,vg). Examples of rooted trees are given in Fig.

10.2.3.

L4 A A

Fig. 10.2.3 Rooted trees

10.2.5 Definition : A binary tree is defined as a tree in which there
is exactly one vertex of degree two and each of remaining vertices
are of degree one or three.



184

Examples of binary trees are givenin Fig. 9.2.4.

Fig. 10.2.4 : Binary Trees
Note that every binary tree is arooted tree.

10.2.6 Theorem 1: Let T be atree with root vertex vgthen,
a) TherearenocyclesinT.
b) vq istheonly root of T.
c) Each vertex in T, other than v has in-degree one and v

has in-degree zero.
10.2.7 Levelsin atree
Consider the trees given below in the figure 10.2.5. We start
with vertex vg theroot vertex. No edges enter vg.

Leve

0

@ T (b) T2

Fig. 10.2.5: Levelsin atree

Several edges may leave vy. These edges are drawn in
downward direction. The vertex v is said to be at level 0. The
edges starting at vy will terminate into the vertices which will be
caled as level 1 vertices. v is sometimes called parent of vertices
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in level 1 while vertices in level 1 are called the offspring of vg.

The edges having a vertex at level 1 are drawn downwards. The
vertices at which the edges drawn from level 1 vertices terminates
are called vertices at level 2. The offspring of any one vertex are
sometimes called siblings. The largest level number of a tree is
called the height of the tree. The vertices of the tree that have no
offspring are called the leaves of the tree. All the vertices of tree
that can be reached by a path beginning at any vertex v are called
descendants of vertex v. If T isrooted tree with vertex vy and v is

any vertex of T other than v, then the tree with root vertex v is

called subtree of tree T beginning at v. Denote subtree of tree
(T, vp) asT(v).

In figure 10.2.5(a) T, has vertex vg at level 0. Level 1
vertices are vq,v,,v3. Level 2 vertices are v4,vs,vg,v7. Level 3
vertices are vg,vg,Vqg,Vv11. The height of tree T; is 3. The vertices
Vg,Vg,Vig,V11 are leaves of tree T,. The offsprings of v,y are
V1,Vo,Vv3. The offspring of v, are vg and vg. The vertices vg and
vg are siblings of v,. The descendants of v, are vig and vq;. The
subtree of T; beginning at v, is given in figure 10.2.6. The height
of subtreeis 2.

Level
Vo
0
V5 V6 1
2
VlO V11

Fig. 10.2.6 : Subtreeof T;

Example Draw a tree T with vertex set
{v1,V2,V3,V4,V5,Vg,V7,Vg, Vg,

vio} and edge set {(v,,V3),(V2,v1),(V4.V5).(V4.Ve). (V5. V). (V6. V7),
(V4:V2):(V7,Vg),(V7,v1p)t . Show that T is a tree and identify the
root. Draw one subtree of T. Write height of T.

Solution : T isatree with root vertex v, asthereis path from v, to
every vertex intree T. There are no cycles. Height of tree T is 3.
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@T
Subtreeof T is
Ve
V7
Vg V10
(b)

Fig. 10.2.7 Subtreeof T

10.3LABELED TREES

It is sometimes useful to rabel the vertices of tree for a
particular purpose. The set of vertices of tree is not important but
emphasis is given on the label which is attached to vertices of tree.
Such a tree where labels are given to each vertex is called labeled

tree.
Some exampl es of |abeled trees.

10.3.1 Label treerepresenting algebraic — expression.

Consider the algebraic expression.

(4= (3xx))+((2-x)+(5+x))
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The labeled tree for this expression is shown in Fig. 10.3.1.

Fig. 10.3.1: Labeled treefor algebraic expression

While drawing such tree, we try to find the central operator.
The central operator is the operation which is inbetween two
numbers or expressions. As shown in the example. ‘+’ is centra

operator of expression (4+(3xx)) and ((2-x)+(5+x)). ‘+ is

central operator of number 4 and expression (3xx) while '+ is
central operator of expression (2—x) and (5+x). Similarly, *-" is
central operator of 2 and x; ‘+ is central operator of 5and x; ‘X’ is

central operator of 3 and x. Each vertex has only one label either a
operation sign or the number.

10.3.2 Positional tree: It is atype of labeled tree. The vertices are
labeled so as to show the position of offspring. While drawing a
positional tree we have to imagine that the n — offspring positions for
each vertex are arranged symmetrically below the vertex and we
place in its appropriate position each offspring that actually occurs.

We do not label the root vertex in these trees as root vertex is
not a offspring. Suppose we choose three offspring positions then
each vertex will have offsprings placed at these 3 — positions only.
If any offspring is not present then that position will not be shown.
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Fig. 10.3.2 A positional 3 - tree

As shown in figure 10.3.2 the first offspring — 1 from any
vertex v if it exists is edge drawn from v sloping to its left. The
offspring — 2 from vertex v if it exists is drawn vertically downward
from v while offspring — 3 from vertex v if it exists, is drawn to the
right of vertex v dropping downloads.

10.3.3 Labeled graph : A graph in which every vertex is assigned a
unique name or label (no two vertices have the same labdl) is called
alabeled graph.

Whenever we are counting the total number of distinct
labeled graphs on certain number of vertices the two differently
labeled graphs are counted separately even though they are
isomorphic. Note that the number of distinct labeled trees with n

vertices (n>2) is n™2. For example, consider labeling of trees on

4 — vertices. There are 16 trees on 4 — vertices that carry distinct
labels. Some of these labeled trees on 4 — vertices are shown in Fig.
9.3.3.

A B A B A B A B
[\' .A N Z.
D C b C D C D C

Fig. 10.3.3: Labeled trees

The trees in figure 10.3.3 are isomorphic but are different
labeled trees.
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9.4 MINIMAL SPANNING TREES:

Here we see how are can associate tree to a connected graph.

Definition 10.4.1 : Let G be a connected graph then a spanning tree
T of G isasubgraph of G which is atree and which contains al the
vertices of G.

Example : Consider graph G and its spanning tree in figure
10.4.1(a) and 10.4.1(b) respectively.

v
1 v7
v
a) 2 Ve Vg
v, Ve

b)

Fig. 10.4.1: Spanningtree

We remove the edges of a graph G which forms cycle and get
atree.

Definition 10.4.2 : A minima spanning tree in a connected
weighted graph is a spanning tree that has the smallest possible sum
of weight of its edges.

There are two algorithm for constructing minimal spanning
trees. Both proceed by successively adding edges of smallest
weights, from those edges with a specified property that have not
already been used.
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10.4.3 Prim’salgorithm : Let G be a graph with n-vertices.

Step 1Choose avertex vy of G. Let V={v;} and E={ |

Step 2Choose a nearest neighbour v;of V that is adjacent to
vj, vjeV and for which the edge (v;,v;) does not form a cycle
with members of E. Add v;tov and edge v; v; to E.

Step 3 Repeat step - 2 until |[E| = n— 1, Then v contains al n
vertices of G and E contains all the edges of minimal spanning
treeT.

Example : The small town of social circle maintains a system of
walking trails between the recreational areas in town. The system
for the same is shown in Fig. 10.4.2. The system is a weighted
graph. The weights represent the distances in kilometers between
sites.

Fig. 10.4.2

Using Prim’s algorithm we begin with vertex vg. The nearest
neighbour to vg is v, who is 2 — km away from vgy. So we select
edge vq v, first. Fig. 9.4.2(a). Consider set { vg,v,}. The vertex
v1 is the nearest neighbour. We can either choose vg vy, or v, v; as
next edge. Let uschoose v, v;,. Then vertex set will be{ vg,v,,vq}
and edges set will be { vgv,,vovq}. Fig. 9.4.2(b). Here we cannot
choose edge vg v as it will make a cycle so next vertex we choose
is vg and edge v,vg to get {vg,vo,vq,v5} and edge set
{vo,vo,vovq,vovg}. Continue in this manner and finally get
minimal spanning tree shown Fig. 10.4.2.



VO VO \V; 1 VO \ 1
3
2
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Vo Vo Vo
€
(b) (©)
Vi

@ °
Fig. 10.4.2: Minimal spanning tree using Prim’s algorithm

Thus total weight of the spanning tree which is minimal is
2+3+5+4+2+3+2=21. Thus, the bicycle path of minimum
length for the system is of 21 km.

Note that for the same graph shown in Fig. 10.4.2. We can
find minimal spanning tree using Prim’s algorithm beginning with
vertex v,. Here also bicycle path is 21 km, long as seen in Fig.
10.4.3.

Fig. 10.4.3 Minimal Spanning Tree
10.4.4 Kruskal’s algorithm : Let G be a connected graph with n
verticesand let S={ e, e,,....., e } be set of weighted edges of G.
Step 1Choose edge e, in S of least weight. Let E={ e;}. Replace S
withS{ g }.
Step 2Select edge g in S of least weight that will not make a cycle
with edges of E. Replace E with EU{e,} and Swith S{ g }.
Step 3Repeat step - 2 until |[E[=n-1.

Since G has n vertices, the n — 1 edges in E will give spanning
treeT.
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Example: Consider the graph givenin Fig. 10.4.3.

Fig. 10.4.3

Initially choose edges with minimum weight. In Fig. 10.4.3,
they are edges v; v, and vsv,. Both of these are selected. Fig.

10.4.4 () Next there are three edges of weight 12. All these edges
can be added without creating a cycle. Fig. 10.4.4 (b) Edge of weight
14 is remaining edge of least weight. Adding this edge given us six
edges for 7 — vertex graph, so a minimal spanning tree is found as
shown in Fig. 10.4.4 (c).

(©

Fig. 10.4.4 Minimum spanning tree by Kruskal’salgorithm
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10.4.5 Application of minimal spanning tree

Suppose that n cities vy, vs,,....,v, are to be connected through
anetwork of roads. The cost C;; of building adirect road between v;

and v; is given. Then the problem is to find the least expensive

network that connects all n cities together. Thus the problem of
connecting n — cities with a least expensive network is a problem of
finding a shortest spanning tree in a connected weighted graph of n
vertices.

10.5 TREES SEARCHING :

Sometimes it is necessary to consider each vertex of atree T
exactly once in some specific order. When we reach a particular
vertex and wish to perform computation at that vertex then that
application is represented by the tree. By visiting a vertex, we mean
performing particular task at that vertex.

The process of visiting each vertex of atree in some specific
order is called searching the tree or tree search.

In this topic we will consider searches on binary positional
trees. We know that in a binary positional tree, each vertex has two
offsprings. Denote these offspring as v, and v,where v, denotes

left offspring and v denotes right offspring. If a binary tree is not

positional then it can be labeled in such a way that it becomes
positional.

10.5.1 Definition : Let T be positional binary tree with root vertex v
then if v, exists then the subtree T(v, ) will be called the |eft subtree
of T and if vgexists then the subtree T(vy) is called right subtree of
T. SeeFig. 10.5.1.
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(@)

Positional binary tree T

V

M N

(b) (©
L eft subtreeT (v Right subtreeT (vg)

Fig. 10.5.1 Subtree
Note: 1) T(v, ) if it existsisa positional binary tree with root v,

2) T(vg) if it existsisapositional binary tree with root vg

10.5.2 Methods of tree searching

There are three methods of searching. They are:
1) Preorder Search

2) Inorder Search

3) Postorder Search

We will discuss these three methods of tree searching in
detail.
10.5.2.1 Preorder Search

Preorder search of atree consists of following three steps :
1) Visit theroot

2) Search the left subtreeif it exists

3) Search theright subtreeif it exists
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Exercise: Use preorder search and find all subtrees of given treetin
Fig. 10.5.2(a).

¥ ¥
%3 4\h\ jg f

1 6

(b) Subtreesof T after preorder search
Fig.10.5.2abcghidkejf

Procedure : According to preorder search applied to T, first the root
isvisited and ‘@ will be printed. Then the left subtree starting at ‘b’
will be considered. The boxes represents the subtrees in the order of
their search. The next vertex that will be printed will be ‘b’. At ‘b’
the left subtree begin a ‘c’. Thus, next printed vertex will be ‘c’.
After ‘'c’ comes ‘g and ‘h’. All the subtrees towards left of vertex
‘a are searched. Now, we proceed to right subtrees of vertex ‘a’.
The order in which search gives the vertex are ‘d’ then ‘k’ then ‘€
then ‘j’ then ‘f’. Thus, the preorder search givesustree T as“abcg

hidkejf".
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10.5.2.1(a) : Polish form or prefix of algebraic expression

Consider the parenthesized expression

(p+a)x(r—(s+d))

Fig. 10.5.3(@) shows the labeled positional binary tree
representation of this expression.

Fig. 10.5.3(a) Labeled positional binary tree

We can apply preorder search to this tree as shown in Fig.
10.5.3(b).

Fig. 10.5.3(b) Tree“x + pq—r + sd”

The preorder search gives the string “x + pg—r + sd”. This
is polish form of the given expression ((p + ) x (r — (s +d)). The
boxes shows the order of getting the subtrees.
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10.5.2.2 Inorder Search
Inorder search of tree consists of following steps.

1) Searchleft subtree (T(v,),v, ) if it exists
2) Visittheroot, v.
3) Searchtheright subtree (T (vg),vg) if it exists.

Exercises : Use inorder search and find all the subtree of tree T
givenin Fig. 10.5.2(a).

a

/
1\

7 rs /\e
1g 3 " J"K9 10\‘ f

Fig. 10.5.4 Inorder search

First, search subtree 1 in Fig. 10.5.2(a). This requires us to
search subtree 2 and this in turn requires us to search subtree 3. As
before, a search of tree simply prints the label of the vertex.

Thus, symbol ‘g’ is printed first. The root of gis‘c’, so next
printed vertex is‘c’. Right of ‘c’ is‘h’, so next vertex is‘h’ whichis
printed. Now, the next subtree begins at ‘b’, and right of it is ‘i’.
The vertex which will be printed after ‘c’ will be ‘b’ and ‘i’. The
left subtree of ‘@ is complete. Start with the innermost vertex of
right subtree. Subtree in box 6, gives vertex ‘k’, then comes root ‘d’
and then vertex ‘f’. Now vertex ‘f’ istoright of root ‘€’. Finaly the
inorder search will give the tree with following order of vertices, “g
chbiakdjef”.

10.5.2.2(a) Infix notation for algebraic expression
The labeled positiona binary tree given in Fig. 10.5.3(a) is
considered for the expression (p+q)x(r—(s+d)). When inorder

search is applied to this tree we get the string.
1] p+qu—S+d”
Thisisinfix notation for algebraic expression.
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10.5.2.3 Postorder Search
Postorder search of tree consists of following steps :
1) Search for left subtree (T(v, ),v, ) if it exists.
2) Search for right subtree (T(vg),vg ) if it exists.
3) Vit theroot v.

Exercise : Use postorder search and find all the subtree of tree T
givenin Fig. 10.5.2(a).

a

5 10

Fig. 10.5.5 Postorder Search

When we begin the search we see that subtree 3 and subtree 4
must be searched, before vertex ‘c’ is printed, if Fig. 10.5.2(b) is
considered for post — order search.

Thus the order in which the vertices will be considered in the
postorder search can begivenby : “ghcibkjfeda’.

105.2.3(a) Reverse polish form or postfix for algebraic
expression

When postorder search is applied to tree of the expression
(p+q)x(r—(s+d)) weget the string * pg+rsd+—x"

This is the postfix or Reverse Polish form of the algebraic
expreesion.

Note that in a preorder search the order is root, left and right.
For the inorder search the order is left, root, right while in postorder
search the order isl€ft, right, root.
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10.6 DIRECTED AND UNDIRECTED TREES:

The trees with directed edges are of great importance in many
applications such as electrical network analysis, game theory, theory
of languages, computer programming and counting problems. One
of the rooted tree with directed edges is called arborescence.

An undirected tree is simply a tree when all the edges are
made bidirectional. We donot use arrows for the edges in undirected
tree. Some examples of undirected treesis shown in Fig. 9.6.1.

X

(@) (b) (©)

Fig. 10.6.1 Undirected trees

Note that if T is an undirected tree then it is connected and
acyclic. The converse also holds. Thus any connected and cyclic
graph is a undirected tree. Some more properties of directed and
undirected trees are discussed in section 10.2.

9.7 EXERCISES:

1) Draw atree with vertex set V and edge set E. Also find root if
exists.
a) V={abcdef};E={(ab),(ce),(a),(f ) d}
b) V={1,223456}; E={(1,2),(4,3),(4,5), (4,6)}

2) List dl the level — 3 vertices and al the leaves of Fig. 10.2.5(a)
and 10.2.5(b).

3) Consider following Fig. 10.7.1.

Fig. 10.7.1 T(v,)
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a) Find siblingsof v.

b) Find descendants of v;.

c) Computetree T(v,) and T(v).

d) What isheight of T(v,)and T(v;) 2.
e) Listall level —4 verticesif exists.
f) Listal leaves.

4) Construct tree for algebraic expression
a 17+(6-2)—(x—(y-4))
b) 3—(x +(6 x4 +(2-23)))
0 (x=Yy) +((xx 3)—(z + 4))

5) Make a ‘family’ tree that shows the descendants of one of your
great grandfather.

6) How many distinct positional 3 — trees are there with height 2?
Draw them.

7) Use Prim’'sagorithm to find minimal spanning tree for following
graphs and beginning at vertex given.
B

, avertex F

at vertex G

b)




at vertex E.

8) Use Krushkal’s algorithm to find minimal spanning tree for the
graphs givenin Exercise 7.

9) Refer following tree and answer.

a) What is height of the tree?
b) Listtheleavesof T.
¢) How many subtrees of T condition v, ?

d) Listthesblingsof v,.

10) For the graphs given below perform
i) Preorder search
if) Inorder search

iii) Post order search and write the result of your search.
X X

(@) (b)



202

10.8 LET USSUM UP

In this chapter, we have learnt the structure of trees and its
properties we have also seen different ways of searching trees in a
graph. One can aso find the spanning tree using the Prim’'s and
Kruskal’s algorithm. The trees are very useful models for different
situations in computer science.
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11.0 OBJECTIVES

After going through this chapter students will be able to:

about binary operations

Algebraic structures like semi-groups and groups will be
known

Operations like product and quotient of these algebraic
structure will be known

11.1 INTRODUCTION

Semi-groups and groups are mathematical structures. Semi-

groups help in the study of finite state machines. While studying
group structure we develop an understanding for coding theory. To
study groups and semi-groups some knowledge of set theory and
number system is required.

In this chapter we are going to discuss following topics.

e What are binary operations?

e The structure called semi-group, their products and quotients.
e The group structure and its product and quotient.
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11.2 BINARY OPERATION

Binary operation is basic tool to study discrete mathematics.
A collection of objects with operations defined on them and the
properties associated with the operation together gives us a system
which we call mathematical structure or system. An operation that
combines two objects is a binary operation. Binary operation is a
function with certain properties. A set with binary operation is a set
in which an abstract product is defined such that the product of two
elements of the set isagain an element of the set.

11.2.1 Definition 1: A binary operation on set G is defined as a
functionf: G x G —» G.Ifaandb € Gthenf(a, b) €G.

Remark : A binary operation is a rule which assigns to each ordered
pair of element of G, a unique element of G.

Notation : We use the symbol a*b to denotef (a, b).

11.2.2 Examples of binary operation :

1. Let G=Z =Theset of integers.
Define.: G x G —» Gasasb=a+b
Sincea+beZ=G, « ishinary operationon 7.

2. Let G = R = set of rea numbers.
Define-: RxR—>R asaxb=a=+b

Then .« is not binary operation, since it is not defined for every
pair of elements of R. For example; 3e R and 0eR but 3+0 is
not defined.

3. Let G = Z* = set of positive integers, where « is defined as
axb=a-h.
« IS not binary operation since it is not defined for every pair of

elementsof Z*. For example; 2eZ*, 3ez* but 2-3=-1g 7Z".
4. Let G= Z, be set of integers

Define-:Gx G —» Gasasb=a+b-ab

Then - is binary operation. Note that if G = Z* = set of positive
integers then » defined above will not be binary operation as 2 Z",
3¢z but2.3=2+3-23=2+3-6=-1g7Z".

5. Let M be set of adl nxn Boolean matrices.



205

A Boolean matrix is nxn matrix whose entries are zero or
one. Let A = [g;] and B = [b;] be nxn Boolean matrices.
Define Av B, thejoin of A and B, by C = [c;;] where
1|fa”:l or QJ:].
G = 0 if &; and by; both are 0
Define A AB, the meet of A and B by D = [d;] where
1 if & and byj areboth 1
7)o ifa;=0 or b =0

Let M be set of Boolean matrices. Let G = M. Definex on M as

follows: For A,B € M; A.B= AvB. The.isabinary operation.
If - isdefined as A - B = A AB then, again - is binary operation.

11.2.3 Properties of binary operation :

1. Definition 2: A binary operation on aset G is said to be closed if
a-b e Gforal elementsaand b in G. We say . satisfies closure

property.

Note : Whenever - is binary operation, it always hold closure
property and we say G is closed with respect to -.

2. Definition 3: A binary operation on set G is said to be
commutative if a- b=b . aforal a b e G. We say « satisfies
commutative property.

3. Definition 4. A binary operation « on a set G is said to be
associative if a« (b« c)=(a-b) - cforala b, ce G Wesay -
satisfies associative property.

4. Definition 5: A binary operation - on a set G is said to be
idempotent if a- a=afor adl acG. We say » satisfies idempotent

property.

To summaries properties of binary operation we have
following table where « is binary operation on a set G and « satisfies
propertiesfor a, b, c € G.

1l a-beG Closure Property

2. a-a=a |dempotent Property
3. a-b=b«a Commutative Property
4. a. (b c)= (a«b).c | Associative Property

TableNo. 11.1
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Examples based on definition 2 to 5.

1l LeG=Zanda-b=a+b, ~ abe Z, Then. satisfies closure
property asa- b=a+b e Z.

« satisfies commutative property becausea- b =a+ bwhileb
sa=b+aanda-b=a+b=b+a=b:a

Also, (a-b)-c=(a+ b):c
(@a+b)+c
a+ (b+c) [+ + isassociative inZ |

.. * holds associative property. Now, 2* 2=2+2=4 = 2, hence*
does not satisfy idempotent property.

2. Let L be alattice. Definea- b = aab(greatest lower bound of
aand b) Then . satisfies all four properties.
a-b=ananbel, .". « holds closure property
a-a=aaa=a, .". « holds idempotent property
a-b=asrb=baa=b.a ... holdscommutative property

(@a<b)ysc=(@aanb)ac
—an((bnarc
=a-«(b-c), ...holdsassociative property

3. Let G=R and* bedefined as, a*b=ab -+ 2b

Thena- b eR, hence - holds closure property.
a-a=aa+ 2a=a(a+ 2 # a, hence - does not hold idempotent

property.

a-b=ab+ 2band
b.a=ba+ 2a
Sincea+ b# b« a, « 1ISNnot commutativeon R .

(a<b):c

=(ab+ 2b)«cC

=(@ab+ 2b).c+ 2c

= abc + 2bc + 2c and

a-(b-c)
=a- (bc + 2¢)
=a(bc+ 2c) + 2 (bc + 2c)
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= abc + 2ac + 2bc + 4c

Thus, (a« b) - c#a« (b« ¢) and hence - isnot associativeon R .

. Consider the set G = {a, b, c, d} with binary operation - defined

by following table.

o O T o

O 0O Q V|o
O o0 9 O|T
O ®» T T|O
O 9 O al|lQa

i) c-d=aandd-c=a
Thus,c.-d=d.c

ii) b-d=candd-b=Db
Thus,b-d#d«b

iii)a« (b«c) a-b
c

(asb)y-c=c«c=a
Soas(b.c)#(@axb).c

From (ii), « isnot commutative.
and from (iii), « is not associative.

Check your progress

If it is determine

1. Determine whether . is binary operation.
whether - is closed, idempotent, commutative and associate on

given set.

a) On Z wherea-b=2a+b
b) On R* wherea-b=a/lb
c) On Z wherea-b=a-b
d) OnlatticeL wherea-b=av b

(least upper bound of a and b)
Consider binary operation - defined on set G ={a, b, c} given by

following table.
. a b c
a b c b
b a b c
c C a b

a) Is.commutative?

b) Computea- (b-c)and(a-b)«c

c) Is«associative?
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11.3 SEMI-GROUPS

Definition 6 : Algebraic Structure
A nonempty set G with one or more binary operations is called
an algebraic structure.

If . isbinary operation on G then (G, ») isan algebraic structure.

Examples of algebraic structure

1. The set N: set of natural numbers is algebraic structure with
respect to binary operation +. Thus we denote (N, +) is an
algebraic structure.

2. (Z, +) : set of integers with binary operation + is an algebraic
structure.

3. (R, +, o) : setof reel numbers with binary operations + and o,
isan algebraic structure.

Definition 7: Semi-group :

An algebraic structure (G, ) is called a semi-group if the binary
operation - isassociativein G. Thus, if a, b, c € G, then(a- b) . c=
a- (b« c).

Definition 8: Commutative Semi-group :
The semi-group (G, +) issaid to be commutative if - is commutative.

Examples of Semi-group :
1. (N, +): Set of natura numbers with respect to binary operation
+ is semi group as + satisfies associative property i.e. ~ a b, c e
N,(a+b)+c=a+(b+¢

2. (Z,+) : set of integers with binary operation + is commutative
semi-group because + is associative and commutativein Z.

Definition 9: I dentity element:
An element ein asemi group (G, ) is called the identity element if
e-a-a-e=-a~ ae G. (read ~ as'foral’)

Note that identity element is unique. Otherwise if it is not unique
then there exist another identity element i such thati -a=a«i=a.

Thusifa=ethen;i-e=e.i=ze (1)
Also, ifa=ithen;e«i=i-e=i 2
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From (1) and (2) we get e = i. Thus, identity element if it existsis
unigue.

Definition 10: Monoid
A monoid is a semigroup (G, +) that has an identity element.

Examples of Monoid

1. (Z,+): Setof integers with binary operation + is monoid. Here;
Oisidentity ementasO+a=a+0=av acZ.

2. Let S be fixed non empty set and let S° be set of all functions
f:S—> S If fand g are elements of $°, definef - g=1f - g, the
composite function. Then (S°, ) is a semigroup which is not
commutative and is a monoid since S° has identity elementl, i.e.

wfeS Lrf=frl =f

Definition 11: Sub semi-group

Let (G, «) be a semi-group. Let H be subset of G. If H is
closed under binary operation - then (H, ») is called sub-semi-group
of (G, )

Definition 12: Sub monoid

Let (G, ») beamonoid with identity element e. If H be nonempty
subset of G. If H is closed under binary operation - and e € H, then
(H, ) is called submonoid.

Note: 1) Subsemigroup of asemigroup is itself a semigroup.
2) Submonoid of a monoid isitself a monoid.

Examples of submonoid

1. If (G, «) is a semigroup, then (G, «) is subsemigroup of (G, ).
Similarly if (G, +) isamonoid then (G, ») is submonoid of (G, »). If
T ={e€} then (T, +) isalso asubmonoid of monoid (G,:).

2. Let H be set of all even integers then (H, X) is a sub semigroup
of (Z, X) where ‘X’ isbinary operation multiplication. But (H, X) is
not a submonoid of (Z, X) because 1 isidentity element of Z which
does not belong to H.

Group Theory
A group is formally defined as below. We denote the binary
operationas“0” or “*” until or otherwise specified.
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Definition: Let G be a non-empty set and 0 be a binary operation on

G. We say that (G, 0) isagroup if the following four propertiesare

satisfied.

1. G.isclosed with respectto‘*’ i.e.,for dl a, bin G the element a
* bisauniquely defined element of G

2. G.isassociative with respect to ‘*’
i.e,fordla,b,cinGa* (b*c) = (a*b) *c

3. ldentity element existsin G for ‘*’
i.e., if thereexists ‘e suchthata* e=e*a=aVvainG.

4. Inverseexistsfor each element in G with respect to ‘0’

i.e., for each ain G there exists an element a * in G such that

a*a l=a 1* a=e(whereeisidentity element of G)

Example 1: Set of all non-zero rational numbers from a group under
ordinary multiplication.

Solution: Let Q* isthe set of all non-zero rational numbers.

Closurelaw: Leta, b e Q*
a. b aso belongsto Q* (Product of two rational numbersis aational
number)

Q* isclosed with respect to multiplication.

Q* satisfiesfist condition of agroup

W

3

w o (w)w  u(w)w

Associative law: Let a,b,ce Q* let a:E,b:X and c=
X y

=, (ab)c=|—|—

v
y Xy x|z (y)z  x(yz)

(+ (uv)w = u(vw) and (xy)z = x(yz) where u,v,w,x,y,z € Z and
satisfies associative law)

uv

Consider a-b:E-
X

=a(hc)
From the above example it isclear that (a. b) .c=a.(b.c) andit s
truea, b, ceQ*

Q* isassociative with respect to multiplication.

Existence of Identity: since 1 isarational number 1 eQ*
Let aeQ*

Wehaveal=a=1a

So 1istheidentity element of Q* which existsin Q*
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Existence of Inverse: To prove existence of inverse, let a= Phean

q
element Q* There exists ﬂGQ* such that PA_,
P q p
That showsﬂistheinverse of Band itistruefor al aeQ*
p q

Hence inverse exists for such element of Q* and inverse of a
denoted by Vaor a™.

Q* satisfies all four properties of a group, Q* is a group under
multiplication (Q*, .) isagroup

Properties of aGroup :

Abelian Group: In addition to the above mentioned four properties
of a group if it also satisfies another property called commutative
property ,i.e,a*tb=b*aVvVa,beG

The group is calles either Abelian group or commutative group. A
group which is not abelian is calles as non-abelian group

Example3: C={ a+ib/ab eR} Cisan abeian group with two
addition.

Additionisdefinedon Cas(a; +iby) +(a+1by) =(a +a)
+ (b, + by)

Commutative Property
Letx,yeCwherex=a, +ibjandy=a +iby,a,a, by, beR
X+y =(a+iby) +(ax+iby)
= (g + &) +i(by + by)
Since addition two real number satisfies the commutative law.

& + &= at+ay and by+h,=by+b,
=(ap+a) +i(by+ by
=(@+iby) +(a+iby)
—y+z

C satisfies the commutative law with respect to addition.

(C,+) isanabelian group or (C, +) isacommutative group.

Set of complex number also forms an abelian group with respect to
multiplication.

(Leftas an exercise)
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CommutativeLaw : a,b€Q a*b:a—b:b—sa:b* A(.-.ab=ha)
Hance Q. is an abelian group with respect to *.

Example 4: G ={1, -1} isan abelian group under multiplication.

1] -1
1] 1| -1
-1 -1 1

From the above table, it is clear that (G , .) satisfies both closure,
associative property ,and abelian property with 1 being identity and -
lisitsown inverse

Addition modulo “m”

We shall now define a new type of addition called “addition
modulo “and is denoted by a’,, b where aand b are integers and ‘ m’
isafixed positive integers.

By definition , @, b =r 0 <r < mwherer is the least non-negative
remainder when a + b is devided by m and we read itas a addition
modulo m b.

Example5: If a=7; b =8 then add 7 and 8 gives 15 divide by 2
the remainder is 1.
7+2 8=1

Ifa=5andb=6add5 and 6 gives 11 divide by 3 we get the
remainder is 2.

5+; 6=2
Note: If a and b are two integers such that a-b divisible by fixed
positive integer ‘m’ we write a= b (mod m) and we read it as“ais
congruent to b modulo m”
Note: It can be easily seen that a", b = b*,,, ¢ (take any example and
try it in your own)

Example 6: prove that the set G = { 0, 1, 2, 3, 4, 5} is a finite
abelian group of group of order ‘6" with respect to addition
modulo ‘6’.
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From the composition table as shown below

0

1

2

3

4

5

0+0=0

0+g1=1

0+¢2=2

0+¢3=3

0+g4=4

0+¢5=5

1+50=1

1+g1=2

1+g2=23

1+¢3=4

1+64=5

1+65=0

2+0=2

24¢1=3

24¢2=4

2+63=5

2+64=0

24+65=1

3+40=3

3+¢1=4

34¢2=5

3+¢3=0

3+¢4=1

34¢5=2

4+50=4

4+51=5

4+42=0

4+¢3=1

44gd=2

4445=3

gl ] W N|L] O

5+,0=5

5+61:0

54+¢2=1

54+¢3=2

5444=3

5+¢5=4

From the above table we see that all entries in the composite table
are the element of G.

That shows G is closed under addition modulo 6.(“+6".)
To prove Gisassociative, leta=2b=4c=1
Consider 2+¢ (4+6 1) =2+s5=1
(2+6 4) +g 1= 0+61 =1
2+ (4+5 1) = (2+54) +g Landitistrue Va, b, ceG
G is associative under addition modulo 6 (‘+5".)

Existence of identity : letae Ga+;0=0+ga=a Vv aeG.
O istheidentity element in G.

Existence of inver se: from the above table,

0+50=0
1+¢5=0
2+64:O
3+53=0
4+62:O
5+51=0

Inverseof 0isO, inverseof 1is5, inverseof 2is4 , inverse
of 3is3,inverseof 4is2, inverseof 5is1 == inverse exists for
each element of G and belongsto G

== G isagroup with respect to the binary operation +.

CommutativeLaw : a+gb=b+sa¥ a, beG.
|fa:2b:42+54:O:4+62.
(G, +¢) isan abelian group)

Note: The set of first m non-negative forms an abelian hroup with
respect to addition modulo ‘m’
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Finite and identity Group: If the set G contains a finite number of
element then the group then the group (G, *) is called afinite group.
Otherwise the group (G, *) is called as Infinite group

Order of a group: Another natural characteristic of agroup G isthe
number of element it contains. We call it as order of a group and is
denoted by O(G).

Example 10: Let G ={1, -1} isagroup
Then O(G) = 2.

If G is agroup containing the set of al integers or set of all natural
numbers, then O(G) isinfinite.

Order of an element of a group: If Gisagroup and a€ G. The
order of aisthe least positive integer m such that a" = e.

So, to find the order of a group element compute a,a%,a%,.. until you
reach theidentity for the first time. See the following example.

Inthegroup{ 1,-1, 1, -i} 1isidentity elementi*=l,i?=-1,i%=-I
,i'=1,i°=1,i°=-1,i"=-1,i®= 1. Identity appeared twice at i* and
i®, buto (i) =4 (+ itistheleast)

If such integer does not exists we say that the order of ais infinity.
We use the notation O (a) for the order of a.

Co-prime
Two number are said to be co prime if they do not have any common
factory except ‘1'. If aare co primes then there exists two integers x

, Y such that xa+ by = 1.

Example:-7.
Onagroup G, O (a) = 18, State that the orders of &, a™, a”.

Solution:- O(a)=n

O(ak): (nf]k)
1) O (a) =18
18 18
O(aG):MZEZ?’
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2) O (a) = 18
ola®)= (l;,?LS) :1_28:6
3) 0 (a) = 18
o(a7)=(1§13—f37)
Now O(a”’)

O(aq) = O(a7> O(@’) =0 (a) (theorder of element of group is
same asitsinverse)

O(a_7):% =18.

Example 11: Find the order of such element of the group G = {1, 2,
4,7,8,11, 13, 14} the composition being multiplication modulo 15.

Solution: Identity element of G=1:0 (1) =1
To Find the order of 2,2X152X52 = 4X152=8
2X152X152 = 4X152=8
2X152X152X152 = 8X152:1(|dent|ty)
Hence O(2) =4
To Find the order of 4,4x,54 =1(identity)
Hence O(4) =2
To Find the order of 7,7x,57 =4
TX15(X157 = 13
7X157X157X157 = 13X157 = 1(|dent|ty)

Similarly, we can compute the order of 8,11,13,14.
Sub Group :

Sub Group: In general we are not interested in a subset of a group
G. but certain subset of elements in a group is itself a group. This
Situation arises so often that we introduce a special name to describe
it, called sub group. See the following definition for a subgroup.

Definition: A non-empty subset H of a group G is said to be a
subgroup of G if H itself is a group, with respect to the same binary
operation defined on G.

Every subgroup of G isacomplex of G every complex is not always
a subgroup.
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Example 12: Q*under multiplication is a proper subgroup of R*
under multiplication.

Example 13: Additive group of even integer is a subgroup of the
additive group of all integers.

Two-Step Subgroup Test:

Theorem: A non-empty subset of H of agroup G is a subgroup of G
ifandonly if

i. abeHimpliesabeH

ii. aeHimpliesthat a'eH

Theorem: A non-empty subset of H of agroup G is a subgroup of G
ifandonlyifa,beH => ab'eH.

One-Step Subgroup Test

Example 14 : See the example to under stand one-step subgroup
Test.

G be the group of non-zero complex numbers under
multiplication.

H = {a+ib/a®+b’ = 1,aR beR} is a sub group of G.
Letx,yeHwherex=a+ibandy=c+id

1 C-id
C+id c24d2

Inverseof y=

we have xy*= (a+ ib) Ci;'gz = ac+bd +i(bc-ad)/c? + d?
_|_

_ —id
real part of xy =219
P YT
imaginary part of xy’l—M
C%+d?
consider aZer(i] [bz—adz
C +d 2 C +d 2
_ a’c® +b?d? 4 2abed + b%c? + a?d? — 2abed
(cz+d2)
(a2+b2)(02+d2) 11
- 2, 12 = -1
(c +d ) 1

Xy™*eH , hence H is a subgroup of G.
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Example 15: Let Z bethe group of all integers

LetHy={....-6,-4-2,0,2, 4,6...}

Ho={..... -12,-9,-6,-3, 0, 3, 6, 9, 12...} be two subgroups of Z.

I
~=

H,v H,={-12,-9,-6,-4,-3,-2,0,2,3,4,6,9,...}
Since'ZEH]_U H,,-3eH Vv szut'2+'3E H,v H,
H; Vv H,,isnot closed under ‘+'.

“« HyV H,,isnot subgroup of (Z, +).

Example16: G ={1, -1} isagroup
H ={-1} isasubset of G.
Ht={-1}
H = H™but H is not agroup since identity does not exists.
~ H isnot asubgroup of G.
Check your progress
1. Show that AB isasub-group of G if and only if AB = BA.
2. When does the semi-group form a group?

3. Prove that the set {0, 1, 2, 3, 4, 5} is a finite abelian group of
order 6 with respect to addition modulo 6.

4. Show that the set G ={a+b+/2:a,beQ}isagroup with respect to
addition.

11.7LET USSUM UP

In this chapter we have learnt the details of algebraic
structures semi-group and groups. The examples of semi-group and
group are varying because of the properties related to the structure.
The study of semi-groups and groups will make the study of finite
state machines and coding theory simpler.

11.8 UNIT END EXERCISE

Q.1 Show that the set of all positive rational numbers forms an
abelian group under the composition defined by a*b= % :

Q.2 Show that set IN of all natural numbers is not a group with
respect addition.

Q.3  Find the order of the elements of the group (z,,+ 4).

Q.4 Find the order of the elements of the group ({1, w, w?, .).
Where w isa cube root of 1.
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Prove that the fourth roots of unity form an abelian group
under multiplication.

Prove that the set {0, 1, 2, 3, 4} is afinite Abelian group of
order 5 under addition modulo 5 as composition.

Check whether (Z, -) issemi-group or not. Where “-" denotes
integer subtraction.

Check whether (Z, +) and (Z, .) are monoids or not.
cosa —-Sha
Sha Ccosa

a € IR , forms a group under matrix multiplication.
Show that the integer multiples of 5 form a sub-group of the
additive group of integers.

Show that the set of matrices A, { } , Where

11.9 REFERENCESFOR FURTHER READING

1. University Algebraby N.S. Gopalkrishnan.
2. Contemptary Algebraby Gallian.

3. Discrete mathematics by Kenneth and Rosen.

4. Discrete mathematical structures by Kolman, Busby and Ross.
5. Modern Algebra by Vasishtha.



219

NORMAL SUBGROUP

Unit Structure

12.0
121
12.2
12.3
124
125
12.6
12.7
12.8
12.9
12.10
1211

Objectives
Introduction
Product and quotient of algebraic structures
Homomorphism
| somorphism
Automorphism
Cyclic groups
Normal Subgroup
Codes and group code
Let ussum up
Unit end exercise
References for further reading

12

12.0

OBJECTIVES:

After going through this chapter students will be able to know:

Operations like product and quotient of these algebraic

structures.

| somorphism, Homomorphism and Automorphism group.

Generators of Cyclic group.
Normal sub-group.
Coding and Encoding of group.

121

INTRODUCTION :

After having al the basic property of group and sub-group,
we now begin our journey with more detail about group study. In
this we are going to discuss about product of group and quotients
group, isomorphic group, homomorphic group, automorphic group.
In group theory cyclic group are the simplest group aso it is very
interesting. In previous chapter we learn about sub-group, now
here we discuss about cosets and normal sub-group.
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122 PRODUCT AND QUOTIENTS OF GROUPS:

12.6.1 Definition : If G; and G, are groups then the product of G;
and G, denoted as G; x G, isagroup with binary operation

defined by (al,bl)(az,bz) = (alaz,blbz)

Examples 1: Let G;=G,=2,={0,1} , 0 is notation for [0] find
Glez.

Solution: G = G1XG2 = ZZXZZ

= {(60), (5.7). (1.0). (1)

Composition tablefor Z,xZ, is

e ao ey @y
0 0[©0 o @1 (&1
Lo (Lo @9 (1) (1)
O 9|(©1 @1 @9 (1)
LYy @1 @0 @)

Notethatin(Z,,+), 1+1=2=0. Gisgroup of order four.

12.3 HOMOMORPHISM

Group of Homomor phism: Till now we have seen the notion of a
group and various type of group. Now we see the relation between
two groups by introducing “Homomorphism”. A relation between
groups G and G, is generally exhibited in terms of a structure
relating map from G to G;.

Let G and G4, be two groups. We are interested in a map that
relates the group structure of G to the group structure of G4, and this
map often gives us information about the structure of G; from
known structural properties of G, or information about the structure
of G from known structural properties of G;

We known that the group structure is determined by its binary
operation. We now define such a structure relating map for groups,
and then point out how the binary operations of G and G; are related
by such a map.
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Definition: Let G and G; begroups. A mapf: G — G issaid to be
Homomorphism

If f(ab) = f(a) f(b) foral a, b €G.
Note: If the operation in G is denoted by ‘*’ and the operation in G,
is’ The above condition for Homomorphism means the following.
f(aob) = f(a) . f(b).

12.3.1 Properties of Homomor phism

Let G and G; be two groups. e and e; be the identity element of G
and G; respectively. If f is Homomorphism from G to G; then
f(e)=e,

Range of Homomorphism: G and G; are two groups and f is
homomorphism from G to G; The set of all f images of G in G; is
called range of homomorphism.

It can be writtenasf (G) ={ f (@) / ae G}

12.3.2 Typesof Homomorphism

Onto Homomorphism: Let G and G; be two groups and f is a
mapping from G onto G,

If f (ab) =f(a) f(b) ¥ a be G thenfissaidtobeaHomomorphism
from G onto G;.

In some books it isreferred as epimor phism.

Endomor phism: A homomorphism of a group into itself is called
an endomorphism.

Monomorphism: If the homomorphism is one-one it is called
monomorphism.

Example 2. Let G be the additive of integers and G; be the
multiplicative group. Show that f :G — G;
afunction defined asf (m) = € is a homomorphism

Solution: Letm ,neG;f(m)=€e"eG,andf(n)=€"€G,;
m+n € G (G is additive group)
f(mrn)=™"=¢€"€e" = f(m)f(n)

f is homomorphism from G to G,

12.4 1SOMORPHISM

I somor phism: A function f from G to G, Is said to be isomorphism,
if

1. f:G — Gyisone-one

2.f:G— Gyisonto
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3. f: G — G, ishomomorphism.
Says distinct element in G have distinct f - imagesin G,
Says V X € G, JacGsuchthat f(a)=x.

Says image of the product is same as product of images.

Note: in the above definition, we have denoted the operation as
multiplication. We can use different symbols to denote the
compositions.

Note: There may exists more than one isomorphism from G onto G;.

Example 3: Let G be the multiplication group of al positive real
numbers, and G; be the additive group of al real numbers. The
mapping defined by f : G — G; such that f (X) = log x .is
isomorphism from G to G,
Solution: : G — Gy=1log X

To prove ' isone—one

Let X, X, €and 7 (Xq) = F (Xo)

= Log x; =log x,

= 0% = glogx

= X1= Xo

= [ isone—onefromGto G;

Toprove /' ison-to

For any real number yeG;, €’ is a positive real number such
that &€ G

f)=loge=yeG;
» Each element of G, isthe 7 - image of some element in G.
i.e.f ison-to.
To prove / as homomorphism.
Consider x,y eGwhere f (x) =logx: F (y) =logy
Then 7 (xy) = log (xy)
= log(x) +1og(y)
=) +7(y)
is homomorphism from G to G,

i

=~ isisomomorphism from G to G,
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Example 4: There exists isomomorphism from an additive group of
integers.
G={....-3,-2,-1,0, 1, 2, 3...} to another additive group
G ={....,-3m, -2m, -m, m, 1m, 2m, 3m...} where m is any fixed
integers not equal to zero.
Solution: Define mapping’ : G — Gy such that 7 (x) = mx
To prove s isone-one: let x;, X, e Gand f (Xg) =1 (Xp)
mx;= mx, (from the definition of 1)
X1 =X
f isone—onefrom Gto G;
To prove 1 is onto: for any element y € G; 3 y/m € G such that
£ (y/m) = m(y/m) =y €G,
= each element of G, isthe 7 - image of some element in G.
i.e., [ oson-to.
To prove /' as n=homomorphism.

Consider xy € G whee 7(X) = mx : Ff(y) = my
7 (x+y) =m(x+y)
= mx + my
=F(X)+7(y)

¥ o

F ishomomorphism
~ [ Isisomorphism from G to G;

125 AUTOMORPHISM OF A GROUP

Definition: If f:G — G isanisomorphism from a group G to itself,
then f is called an automorphism of G.

Example 5: If G is an additive group of complex number, show that
f:G—>G such that f(Z) = pZ where p is a non-zero complex

number, an automorphism of G.

Solution: G isan automorphismif f:G— G isanisomorphism.

To provef isone-one.
LetZ,,Z, €G and f(Zl) = f(ZZ)
PZ, = pZ,
Z]_:Zz
f is one-one.
To provef isonto.
For any element Z € G there exists Z/p € G such that f(Z/p) =
p.(Z/p) = Z.
Each element of G isthe f- image of some element in G.
Thereforef isonto.
To prove f is homomorphism.
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Consider f(Z,+ Z) = p(Z1+ Z5) = pZy+ pZ, =1(Zy) +1(Z2)
f isan homomorphism.

Thereforef isisomorphism from G to G.

Hence f :G — G isan automorphism.

12.6 CYCLIC GROUP

Cyclic group: In the group theory, cyclic group are the ssimplest are
the simplest among all group al groups. Because of this cyclic
groups possess interesting properties. With the help of cyclic group
we can find answer for some of the difficult questions in group
theory. Now let us see what do we mean by a cyclic group?

The formal definition of acyclic group is given below.

Definition: A group G is called cyclic if for some a € G, every
element x € G is of the from such that &

Where nis someinteger. The element ‘a is called a generator of G.
A cyclic group G generated by a can be represented as G = <a>

If G is a group with respect to the binary operation addition, cyclic
groupisdefinedasG={ na/ ne Z}

Example 6: G ={1, -1} isacyclic group generated by -1 (+ 1= (-
1)*-1=(-2))

12.6.1 Cyclic Subgroup: A subgroup H of a group G is called a
cyclic subgroup if H isa cyclic group.

Note: If a is a generator of a cyclic group G then a* is dso a
generator

Let G be acyclic group generated by a.

Then for every x €G there exists an integer, such that x = a"
— (a-l)-m

= Every x can be expressed as integral power of a*
i.e,a’isasoagenerator of G.

12.7 COSETS

Definition: If G isa Group and H is a subgroup of G. let ae G
Then

Ha={ha: heH} iscalled right coset of H in G generated by a.
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And the set aH = {ah: h e H} iscalled left coset of H in G generated
of a

Example7. LeeG={aDb,c,d, e f} isagroup. AndH ={ b, c, €}
be the subgroup of G.

Solution: ae G: Ha={ ba, ca, ea}
deG:Hd={ bd, cd, ed} are someright coset of H in G.
ceG:Hc={ bc, cc, ec}
The set aH = { ah : h € H} is caled left coset of H in G
generated by a.

aeG:aH={ ab, ac, ae}
de G:Hd={ db,dc, de} are someright coset of H in G.
ceG:Hc={ch,cc,ce}

Note: If Gisan abelian group then aH = Ha

Example 8. Let G be the additive group of integers, and H is a
subset of group of G where element of H are obtained by
multiplying each element of G by 2.

Solution:
Clearly (H, +) isasubgroup of (G, +).

Now G={....-3-2-1,0,1,2 3...}
H={....-6,-4,-2, 0,2, 4,6...}
leGand1l+H={....-5-3-1, 1,35 7...}

Example 9: Let G= <a> acyclic group of order 15. List all the cosets
of <a>inG.

Solution: Let G = <a> acyclic group of order 15.

i.eeG={eaa, o, ........... , d1a}

H isasubgroup of G.

H={e &, a%

The left cosets of <a®> are

aH = {a a6 ’ all}’ a2H — {az’ a7’ a12}’ a3 H= {as’ a8,a13},

a'H={a"aa".
Remark: A coset may not essentially a subgroup

Remark: If eistheidentity in G, it isaso identity in H. Then eH =
{eh/heH} =H
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12.7.1 Normal Subgroup

If Gisagroup and H isasubgroup of G, it isnot always true that

aH = Hafor al ain G. If it happensi.e.,if Ha=aH ¥ ain Gwe call
H asnormal subgroup. Anditisdenotedby H @ G.

Definition: If Gisagroup and H is a subgroup of G.If Hx = xH
¥ XeG then H is called a normal subgroup.

Note: Every norma subgroup but every subgroup need not be a
normal subgroup.

Importer and proper normal subgroups. G isagroupthen G, {€} are
subgroup of G and they are also normal subgroups of G. These two
subgroups are called trivial or importer subgroups of “G”

The normal subgroup of G other than these two subgroups are called
proper normal subgroups of G.

For example H = {1,-1} is a norma subgroup of multiplicative
group of none zero real numbers.

Example :- Show that every subgroup of an Abelian group is
normal.

Solution :- Let G be an abelian and H a subgroup of G. Let x be any
element of G and H any element of H.
So, xhx'=xx?
=h [...GisAbelian = x*h = hx]
=eh
= heH.
Hence xeG,
= heH
= xhx*' e H
SoH isnormal in G.

Example :- Given that H = { 1, (12)(13) (34)} is a subgroup of A,.
Show that (243)H = (142)H and (132)H = (234)H but (234)(132)H #
(142)(234)H. Is H a normal subgroup of Ah? Justify your answer.

Solution :- H={1, (12)(34)} isasubgroup of Ah.
As={1,(12)(34)(13)(24)(23)(14)(123)(132)(142)(124)}
Toshowthat  (243)H = (142)H
(243)(12)(34) = (142)
(243)H = {(243)(142)}
(142)H =i.e. (142)l and (142)(12)(34)



227

(142)H = {(142)(243)}
vovw (243)H = (142)H
To show that (132)H = (234)H
(132)H = (132)I
(132)(12)(34) = {(132), (234)}
(2341 = (234)
(234)(12)(34) =(132)
(234)H = {(234)(132)}
.. (132)H = (234)H
To show that (234)(134)H # (142)(234)H
(234)(132)H = (234)(132)
(234)(132)(12)(34) = |
(142)(243)(12)(34) = (124)
Thus (243)(132)H # (142)(243)H
...GH=HG
... Hisnormal subgroup A..

12.8 CODE AND GROUP CODE

Word : A sequence of O'sand 1'sis called aword.
e.g. 1101, 101, 00100 are words.

Code : A collection of words used to represent different messagesis
called code.

Codeword : A word inacodeis called codeword.

Block of code : A code consisting of words having same length is

called block of code.

Let B ={0, 1} then BxB={00,01,10,11} =B? i.e. B® contains

words of length 2, and it contains 4 elements or codes. Number of
elements in the set is called cardinality of the set and it is denoted by

two vertical bar.

.". Number of elementsin set B> =|B? |=4. Also |B|=2.
.. |B?|=|BxB|=|B|x|B|=2x2=22
S |B?E2%=4

Similarly

B3= BxBxB ={000, 001, 010, 011, 100, 101, 110, 111},

|B3|= |BxBxB|= |B|x|B|x|B|= 2x2x2 = 2°=8
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.. Theset B™ iscollection of codes of length m and it contains 2™
codes.

JoBM=2m

Weight : Let x e B" then weight of x isnumber of 1'sin x and it is
denoted by w(x).

eg. i) x=1101 eB*..w(x)=3
i) x=110010 B®.". w(x)=3
i) x =11 eB?.. w(X) =2
ivV) x=0000 eB*.. w(x)=0

x@®y : (Readasxringsumy). Letx,y eB", then x®y isa
sequence of length n that has 1's in those position x and y differ and
0’sinthose positions x and y are the same.
i.e. The operation + is defined as

0+0=0 0+1=1
1+1=0 1+0=1
e.g.

i) x,yeB% x=101,y =110
X = 1 0 1

y = 1 1 0

xy = 0 1 1

. x®y =011and w(x®y) =2

i) x,yeB®, x=110100, y = 111111
X = 1 1 0 1 0 O
y = 1 1 1 1 1 1
xey = 0 0 1 0 1 1

x@y=001011and w(x®y)=3

iii) x,yeB’, x = 1010001, y = 0001010
) x@y =1011011and w(x®y) =5

Distance : The distance between x and y isthe weight of x®y. i.e
w(x@y), it is denoted by d(x, y). The distance between two words
is exactly the number of positions at which they differ.

Sodx, y) = w(xey).
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It is also called Hamming distance. Minimum distance: Let
x,y € B" then minimum distance = min. {d(x, y) : x,yeB"}.

Let xq,X2,...,X, aethe codewords, letany x;,i=1,2, ... n
is a transmitted word and y be the corresponding received word.
Then y=x if d(xg,y) isthe minimum distance for k = 1, 2, ...n.
Thiscriteriais known as the minimum — distance criterion.

Encoding function : Let m < n (m, neN, N is set of natura
numbers) then an one to one function e:B™ — B" iscalled an (m, n)
encoding function. i.e. for xeB™ we have yeB" such that

e(x) =y.

Detection of errors : Let e:B™ »B" (m < n) is an encoding
function then if minimum distance of eis (k + 1) then it can detect k
or lessthan k errors.

Correction of errors : Let e:B™ - B" (m < n) is an encoding
function then if minimum distance of eis (2k + 1) then it can correct
k or lessthan k errors.

Examplel: Let eis(2, 4) encoding function defined as
€(00) = 0000 e(01) = 1011
e(11) = 1100 e(10) = 0110

i) Find minimum distance,

i) How many errors can e detect,

iii) How many errors can e correct.

Solution :
Let xo=0000, x; = 1011, x, = 0110, x3 = 1100

) w(xg®xq)=w(x)=3

Xog®Xp)=W(Xp)=2

.". Minimum distance of e = 2.
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Note that minimum distance is not unique. There are three pairs
having distance 2.

i) . k+1=2..k=1,

.. ecandetect 1 or lessthan 1i.e. O errors.

i) . 2k +1=2 . k:%

. 1 1 .
.. @ can correct > or less than > errors, i.e. e can correct O

errors.

Example 2: Let eis (3, 8) encoding function defined as

i)

(000) = 00000000  &(011) = 01110001
e(010) = 10011100  e(110) = 11110000
e(001) = 01110010  (101) = 10110000

€(100) = 01100101 e(111) = 00001111
Find minimum distance.

i) How many errors can e detect?

iil) How many errors can e correct?

Solution :

Let xo= 00000000, x; = 10011100, x, = 01110010, x3 =
01100101, x, = 01110001, x5 = 11110000, xg = 10110000,
x,= 00001111.

W(Xo®xp)=w(x1)=4, W(Xo®Xp)=W(x5)=4,
W(xo®x3)=w(x3)=4, W(Xg®@x4)=W(X4q)=4,
W(Xo®X5)=wW(xg5)=4, W(Xo®Xg)=w(Xg)=3,
W(xg®x7)=w(x7)=4

X
W(x1®©x3)=6, W(X;®X4)=6, W(X;®X5)=4, W(X;®Xg

)=3
W(X;®x7)=4, W(X,®X3)=4,W(X®X4)=2, W(Xp®X5)=2,
W(Xp ®Xg)=3,W (X, ®Xx7)=6,W(X3®x4)=2,Ww(X3®X5)=4,
W(X3®Xg)=5,W(X3®x7)=4, W(Xx4®x5)=2, W(X4®Xxg)=3,
W(x4®X7)=6,W(x5®Xg)=1, W(Xx5®x7)=8, W(Xxg®Xx7)=7
The minimum distance of e = 1.

“k+1=1..k=0
". ecan detect O or less than O errorsi.e. O errors.

i) .. 2k+1=1..k=0

. ecan correct O or lessthan O errors. i.e. O errors.
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Example 3 : Compute

1 1 O 1 0 O
0O 1 1 1 0 1
@
1 0 O 0O 0 1
0O O O 1 1 O
Solution :

1+1 1+0 040
0+1 1+0 1+1
1+0 0+0 O+1
0+1 0+1 O0+0 1 1 O

*." Samedigit sum = 0, opposite digit sum=1

o =
O R
P O O

Example4: Let B ={0, 1} and + isdefined on B asfollows.
+ o 1
0O [0 1
1 1 0

Then show that (B, +) isagroup.

Solution :

Addition is associative. Here B is set of bits and the operation of on

Bis+. .. B with operation + is associative.
Also0+1=1and0+0=0

.. 0eB is an identity element. Here inverse of each element is

itself. Since0+0=0... 071=0

and1+1=0 ..11=1

.". Inverse of each element exists.

.. (B, +) isagroup.

Three Cartesian product of groups is again a group.

.. B"=BxBxB..ntimes..xB with + operation defined as

(X0, X2, 00 X ) (Y1, Y2000 Y ) = (X4 + Y1, X2+ Y2, ., X +Y) ) iSdASO @

group. Here identity element is (0, O, ... 0)e B" and every element

isitsown inverse.

(B“,@) isagroup. Let AcB" suchthat (A,®) isagroup then

A is subgroup of B". Now we will seethe encoding which usesthis
property of B".
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Check Your Progress:

1.

Let e:B? — B® isan (2.6) encoding function defined as
€(00) = 000000 e(01) =011101

e(11) = 111111 ¢(10) = 001110

i) Find minimum distance.

i) How many errors can e detect?

iii) How many errors can e correct?

Let eis(2, 5) encoding function defined as
€(00) = 00000 e(01) = 11011
e(11) = 11100 €(10) = 00101

i) Find minimum distance.

i) How many errors can e detect?

iii) How many errors can e correct?

Answers:

1.

i) Minimum distance of e = 2.

i) Function can detect 1 or O errors.
iii) Function can correct O errors.

i) Minimum distance of e = 2.

i) Function can detect 1 or O errors.
iii) Function can correct O errors.

GROUP CODES:

group code if range of e is subgroup of B". i.e. (Ran.(e), @) isa
group. Since Ran.(e)c B" and if (Ran.(e), @) is a group then

An (m, n) encoding function e:B™ —B"(m<n) is caled a

Ran.(e) is a subgroup of B".

If an encoding function e:B™ — B" (m<n) is a group code,
then the minimum distance of e is the minimum weight of a non zero

codeword.

Example 5 : Show that an (3, 7) encoding function e:B% - B’

defined by
e(000) = 0000000 e(011) = 0111110
e(001) = 0010110 e(101) = 1010011
e(010) = 0101000 e(110) = 1101101
e(100) = 1000101 e(111) = 1111011

isagroup code. Hence find minimum distance.
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Solution : Let

xo = 0000000 x4= 1000101
x; = 0010110 x5 = 1010011
x5 = 0101000 xg= 1101101
x3 = 0111110 x7= 1111011

-+ Ran.(e) = {xg,Xq, ..., X7}
Xg®Xg=Xg, Xo®Xq=X;1, Xo®x7=1010011= x5 like this we can
compute and this we will present in table.

The composition Tableis,
&) X0 X1 X2 X3 X4 X5 X6 X7

Xg | Xo X1  Xo X3 Xg4 Xg Xg X7
X1 | X1 Xg X3 Xo Xg Xg X7 Xg
Xo | X Xg3 Xg X4 Xg X7 Xg Xg
X3 | X3 Xp X Xg X7 Xg X5 Xg
Xq4 | Xa X5 Xg X7 Xg Xg Xp X3
Xg | X5 Xq4 X7 Xg X; Xg X3 Xp

Xg Xg X7 X4 X5 X2 X3 X X1

X7 X7 Xg X5 X4 X3 X2 X1 X

Like in Example 4 we can verity that (Ran.(e), @) is group and
Ran.(e)c B.
.". Ran.(e) is subgroup of B’.
". e:B3 > B’ isagroup code.

The minimum distance of a group code is the minimum
weight of non zero code word.

Consider  w(xg)=0, Ww(x)=w(x4)=3, Ww(xp)=2,
W(xs)=4, w(xz)=w(xe)=5, w(x7)=6.
.". Minimum distance = 2.

Example 6 : Show that an (2, 5) encoding function e:B? — B®
defined as

€(00) = 00000 €(10) = 10101

e(01) = 01110 e(11) = 11011

isagroup code. Hence find minimum distance and also find
how many errors can e detect?
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Solution :
Xo = 00000, x; =01110, x, =10101, x3=11011

. Ran.(e) = {Xq, X1, X7, X3}
.". The composition Table

Addition is associative

.. (Ran.(e),®) is associative. We can see that the first row is same
as heading row.

". Xq isidentity element. Also xog®Xxg=Xg, - Xg>=Xg.
X, ®Xp=Xg. ++ X' =X, SO ON. i.e. inverse of each element exists
whichisitself.

.". (Ran.(e), ®) isagroup and since Ran.(€) c B°.

.". Ran.(e) is subgroup of B.

.. e:B% - B® isagroup code.

Consider,

W(xg)=0, w(xy)=w(x,)=3, w(xz)=4.

The minimum distance of a group code is the minimum
weight of nonzero code word.

."« Minimum distance = 3.
Herek+1=3 k=2.

.. e can detect 2 or less than 2 errors. i.e. e can detect 0, 1 or 2
errors.

Check your progress:

1. Show that an (2, 4) encoding function e: B2 — B* defined by
e(00) = 0000 e(01) = 0011
e(11) = 1110 e(10) = 1101
isagroup code.
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129 LET USSUM UP

In this chapter we have learned that
e Theproduct of G; and G, denoted as Gy x Gy
e Homomorphism of a group, its property and types of
homomorphism.
e Isomorphism of agroup.
e  Automorphism of a group.
e Cyclic group and its generators.
e Cosets and normal sub-group and Quotient group.

12.10 UNIT END EXERCISE

Q.1 Define normal subgroup and give one example.

Q.2 If ( C, +) be agroup, f:C—C define by f(Z) = Z foreveryZ e
C, Z being conjugate of Z, then show that f is Automorphism.

Q.3 Show that A = ({0, 1, 2, 3, 4, 5}, +¢) iscyclic.

Q.4 Show that multiplicative group G ={1, -1, i, -i } iscyclic.

Q.5 Let (Z, +) be the group of integersand N ={3n/ n e Z} then N
isanormal subgroup of Z.

Q6I1fG={1,-11i,- } isagroup and G'= ({0, 1, 2. 3}, +4) is
another group then show that gG isisomorphismto G'.

Q.7 If f:R" - R defined by f(x) = log(x) for every x € R" then
show that f is isomorphism. Where R and R are multiplicative
group.

Q.8 Provethat all finite group of order 2 are isomorphism.

Q.9 Mapping f:G—G defined by f(x) = x*, for al x € G on a
group (G, *) isan automorphism if and only if (G, *) is abelian.

Q.10 Show that the group ({0, 1, 2, 3,........ n-1}, t,) is a cyclic
group.

Q.11Show that (U, . ) isacyclic group of n™ roots of unity under
multiplication.

Q.12 If H is subgroup of G and if x € G implies that x* € H, then
prove that H isanormal subgroup of G.
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0O 1 O 1 1 O

1 1 O 0O 0 1
Q.13 Compute ® :

0 1 1 1 1

1 0 1 0O 0 1

Q.14 Find weights of the given words @) 001110, b) 0000, c)
111, d) 100100110.

Q.15 Find the distance between x and y
i) x=00111101, y =00110010
ii) x=1010001100, y = 0000111100
Answers:

1 0 O
1 1 1
1 1 O
1 0 O
14a 3 b 0 ) 3 d 4
150) 4 i) 4

13
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13

RINGS

Unit Structure

13.0 Objectives
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13.2 Algebraic structures with Binary Operation
13.3 Rings
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135 Fields

13.6 Ring of homomorphism

13.7 Ring of isomorphism

13.8 Letussumup

13.9 Unit end exercise
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13.0 OBJECTIVES:

After going through this chapter students will be able to:
e Algebraic structures with two binary operations.
e Definition of ring and its property.
e Zerodivisor and integral domain.
e Fidds.
e Ring of homomorphism.
e Ring of isomorphism.

13.1 INTRODUCTION:

Groups were studied in the previous chapters, and the
definition of group involves a single binary operation with respect to
addition or multiplication. The distributive laws interlink the two
operators addition and multiplication. This leads us to the study of
one such algebraic system equipped with two binary operations
called asrings.
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Ring is the second algebraic system. The abstract concept of
Rings has its origin from the set of integers. The algebra of rings
follows the pattern already laid out for group. Only difference is
algebraic structures with two binary operations.

13.2 ALGEBRAIC STRUCTURESWITH TWO BINARY
OPERATIONS.

An algebraic structure is a nonempty set together with one or
more binary operation on that set.

Addition and multiplication are both binary operations on the
set R of real numbers is called algebraic structure with two binary
operations. It isdenoted by ( R,+, .).

13.2.1 Rings
Definition: A ring R is a non-empty set with two binary operations
denoted by ‘+' and = with respect to the following conditions.
e Risanabelian group with respect to +,i.e.,
. a+(b+c)=(a+b)+cVabceR
1. thereexistsOe Rsuchthata+0=a=0+aV aeR
1.  For each a€ R, there exists—-a€ R suchthat a+ (-a) = 0 =
(-a)+a
IV. a+b=b+aV abeR
e Risasemigroupfori.e,a(b.c)=(ab).cV ab,ceR
e Multiplication distributes over assition, i.e.,
I. a(b+c)=ab+acV abceR
1. (b+c)a=ba+caV abceR

Note: wewrite ab as ab.

Now let us see one example that satisfies the above-described
axioms.

Example 1. Set of even integers is a ring with respect to usual
addition and multiplications of integers.

Solution: Let E bethe set of even integersi.e.,
E={2x:xeZ}

Leta, be Ewherea=2mandb=2n
atb=2m+2n=2(m+n) e E (+ m+tne 2)
=~ Eis closed with respect to addition.
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Leta, b,ce Ewherea=2m,b=2n,c=2p
at(b+c)=2m+(2n+2p)=2m+2(n+p)=2[(M+n)+p]
=(2m+2n)+2p=(atb)+c
~ E is associative with respect to addition.

Since0eZ,0=20€E
Consider a+ O =2m+2.0=2(m+0) =2m=a

“» Olistheidentity element in E.
For m e Z there exists—m e Z and 2.(-m) € E.

Let—a=2.(-m)

Consider a+ (-@) = 2m +2.(-m)
= 2(m+(-m))
=20
=0=(-a) +a

€ (-a) istheinverse of a.
» |Inverse exists for each element in E.

For a, b, e Ethen a+ b = 2m + 2n = 2(n+m) (sum of integers is
commutative) =2n+2m

=b+a
E is commutative with respect to addition.
(E, +) isan abelian group.
Consider a, b,ce Zwherea=2m,b=2n,c=2p
a(bc)= 2m(2n.2p) =2m,(4np) = 8 mnp
(ab)c = (2m.2n.)2p =(4mn)2p = 8 mnp
a(bc) = (ab).cV ab,ceE
E is associative with respect to multiplication.
Consider a.(b+c) = 2m.(2n 2p)
=2m. 2n +2m.2p
—ab+ac
Similarly, (b +c).a=b.a+ca
~ Distributive laws hold in E.
~ Hence (E, +, .) isaring.

Example 2: Show that the set of al rational numbers is a ring with
respect to ordinary addition and multiplication.

Solution: Let Q bethe set of all rational numbers.
1) (Q, +) isabelian.
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Closure: Leta,be Qthena+beQ
because sum of two rational numbersis arational number.
Associative: Leta, b,ce Qthen(a+b)+c=a+ (b+c)
because associative law for addition holds.
Existence of Identity: 0e Qand0+a=a+0=a forevery ae Q
i.e. Oisadditiveidentity in Q.
Existence of inverse: for every ae Q,-ae Qanda+ (-a) =0
Hence, additive inverse in Q exists for each element in Q.
Commutative: Leta, be Qthena+b=b+a
because addition is commutative for rational.

2) (Q,.)isasemi group.
Closure : Since the product of two rational numbers is a
rational number.

a,beQthena.beQ
Associativity:  Multiplication in Q is associative.

3) Multiplication is left as well as right distributive over addition in
the set of rational numbers. i.e.

a(b+tc)=ab+ac
(b+c)a=b.a+caforeverya bceQ.
Hence, (Q, +,.)isaring.

13.3.1 Ringwith unity

A ring need not have an identity under multiplication, when
a ring other than {0} has an identity under multiplication; we say
that the Ring iswith unity.

Definition: Ris called aring with unity element if thereexists 1 € R
suchthat al =a= laforal a= 0€eR.

Note: A Ring with unity contains at least elements 0 and 1.

Commutative Ring

In a ring, multiplication need not be commutative, when it sis, we
say that the ring is commutative.

Definition: A Ring R is said to be commutativeif ab=ba V a, b €R.

Example 3: Let the addition and multiplication in Q+/2 be defined
asx=a+ b2 andy:c+d\/§
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€Q(V2)x+y (a+0)+(b+d) V2
Xy = (ac + 2bd) + (ad + bc) V2 isacommutative ring with unity.

Solution: Q(v2)={a+b+2 /a,beQ}
X =a+by/2 andy =c+d+/2 € Q(+/2)

x+y=(@+c)+(b+d) J2sncea+candb +d
belongto Q

x+y€Qx/§.
» Q+/2 isclosed with respect to addition.
Forx=a+by2 ,y=c+dy/2 z=e+fJ2 where g,
b,c d,efeQy2
We have, x + (y+2) = a+b+/2 + ((c+dv/2) + (e+f+/2))
=a+b/2 +(c+e+(d+1)+2)
=(@+c+e+(b+d+f)2
=(@++e+(b+d+hv2
=(@+o)+(b+dv2) +(e+1V2)
=(x+y)+
» Q~/2 is Associative with respect to Addition.
Since 0 isarational number 0 + 0~/2 eQ«/i
Consider (a+b+/2) + (0+ 0~/2) = (a+ 0) + (b + 0)/2
=a+Dby2
Similarly (0+0+/2) + (a+b~2) =a+b+/2.
Hence 0 + 0v2 isthe identity existing in Q~/2
Fora beQ, -a -b € Q hence (-a) + (-b)v/2) €Q~/2
Consider a + by/2+ ((-a) + (-0)v/2) = (@ + (-a) + b + (-b)+/2) =
0+0+2
Similarly (-a) + (-b) /2 + (a+b~/2) =0+ 0+/2.
Hence (-a) + (-b)x/i isthe inverse of a+ b+/2
Inverse exists for each element in Q\/E.
X =a+by/2 andy=c+d+/2 € Q(~/2) wherea, b, c,de Q
Consider x +y = (a+¢) + (b + d)~/2
Since addition of rational numbers is commutative.
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atc=c+taandb+d=d+b
X+y=(c+a)+(d+b)2
=(c+d/2) + (a+ b2)
=y +X

Qx/i iscommutative with respect to Addition.

(Q+/2, +) isan Abelian group.

Example 4 : Let (G, *) be an arbitrary commutative group and Hom
G be the set of all homomorphisms from (G, *) onto itself. Then
show that (Hom G, +, .) is aring with unity, where the operation +
defined by

(f + g)(a@ =f(@*g(a), ae G, for every f, g € Hom G, and €
denotes the functional composition.

Solution:
Closure: For every f,ge Hom G, and a, b e G,
(f, g)(a* b) =f(a* b) * g(a* b)
= (f(a* f()) *(9(a) * 9(b))
=(f(a) * 9(a) * f(b) * g(b))
=(f+9)@* (f+9)(b),
So that the sumf + g € Hom G.
Associative : For every f, g, he Hom G, and a€ G,
Wehave ((f +9g) +h) (a) = (f + g)(a) * h(a)
= ((f(a* 9(a) * h(a)
=f(@* ((9(a) * h(a))
=f@* (g+h)@)
= (f+ (g+h)(a).
Thus(f+g) +h=f+(g+h).
Existence of identity : For every f € Hom G, there exists

constant mapping Z which map all elements of G on e, the identity
of (G, *) such that

(f +2)(a) = f(a) * Z(a) = f(a) * e=f(a).

Thus f +Z = f € Z is an identity in Hom G, that is, the
mapping Z in Hom G is the Zero element.

Existence of inverse: For every f € Hom G, € -f € Hom G
defined by (-f)(a) = f(a)*, such that , For every a€ G,

(F+(-N))(@ =f(a) * (@ = e=Z(a).
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Which impliesthat f +(-f) = Z, thereforeinverse also exists.

Commutative property: For every f, g € Hom G, a € G, we
have

(f+9)(@ =f(a) * 9(a) = 9(a) * f(a) = (g +f)(a).
Thus(f +g) =f + g,
Hence (Hom G, +) is commutative group.

Similarly we prove that (Hom G, €) is a semi-group with
identity.

Now to prove that (Hom G, +, €) is a ring with unity there
remains to show that € is distributive over +.

fe(g+h)(@ =f(g+h)a) = f(g(@ * h(a) =f(g(@) * f(h(a))
= (feg)(a) * (feh)(a).

Therefore fe (g + h) = (feg) + (feh), similarly, we can prove
right distributive law.

Thus (Hom G, +, .) isaring with unity.

134 ZERO DIVISORS

There are some properties, which are not true in a general
ring. We know that product of two integers is zero, if one among
them is zero, but this may no longer be true in any ring R of 2 x 2

0 0j(0 1) (0 O
= ; even through
0 0J)l0O 0/f (0 O

matrices we have

o o o

Definition: Let R bearing and a€ R, b € R both are non-zero but
their product

ab=0. Thenwe say that a, b are zero divisors.

are non-zero and their product iszero in R.

13.4.1 Integral Domain

Definition: A commutative Ring, with unity is an integral domain if
it has no zero divisors and it is donated by the symbol.

For example: The Ring of integras, rationa Numbers, and real
numbers and complex numbersis all integral domain.
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13.5FIELD

Definition: A commutative Ring R with unit element i # 0 in which
every non-zero element has an inverse with respect to multiplication
am called afield.

Example 5: Set of Gaussian integersis an integer’s domain but not a
field.

Solution: Set of Gaussian integers Z(i) = {a+ ib/a, beZ)}
Letx,yeZ(i)
Wherex=a+ibandy =c+idwherea b, c,deZ
xty=(@+c)+(b+d)I=g+iby=a+candb;=b+deZ.
X.y=(ac—bd)+ (ad + bc) |
=a+ib,whereay=ac—bd, b,=ad + bc eZ.
~ +, . are binary operationin Z(i).
Since the element of Z(i) are integers,
We have that
1. Addition and multiplication are commutative in Z(i)
2. Addition and Multiplication are associative in Z(i)
3. Multiplication is distributive over addition in Z(i)

Clearly, zeroelement 0=0+0; e Zand unitelement 1 =1+ 0, e Z
Further, for every x =a+ b eZ(i),x,y=0ex=0sincex,y are
integers.

Z(i) iswithout zero divisors.
Hence Z(i) isan integral domain
4

) . 3 .
Let m=3+4ieZ(i)and N=——i —
() 25 25

So that mn=([9/ 25|+ [16/ 25))+i (|(~12)/ 25|+ [12/ 25]) =1+ 0i
But ne Z(i), because 3/25 and 4/25 € Z.

So every non-zero element of Z(i) is not invertible
Hence Z(i) isnot afield.

13.6 RING HOM OM ORPHISM

In groups, one way to discover information about a group is
to examine its interaction with other groups by way of
homomorphism. Now we show that just as a group homomorphism
preserves the group operation, a ring homomorphism preserves the
ring operations.
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Definition: A ring homomorphism f from aring R to another ring Ry
is a mapping from R to R; that preserves the two ring operations;
thatis, forall a, binR

f(a+b)=f(a) +f (b)
f (ab) = (a) f (b).

Example: Let R={[g ﬂ/a,b,Ce Z}. Prove or disprove that the
map ¢ : IR— Z defined by qﬁ([g 2D =a isaring homomorphism.

Solution: ¢:1R—>Z defined by qﬁ([a bD:a.

0 c
Let Az[ai ﬂ ands{az ﬂ
0 ¢ 0 ¢

H(A+B) =¢ﬂf§ ZH% ?D

_y[[ara bb,
0 G+G

=ata

= ¢(A)+¢(B)

ool 2% 2|

_ ¢([aia2 a1b1+blczD
0 g
—

= p(A)$(B)

ab . . )
q{{o CD =a isaring homomorphism.

13.7 ISOMORPHISM

Definition: A homomorphism f:R — R is called an isomorphism if,
f is both one-one and onto mapping.
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Propertied of homomor phism: Let f : R — R; be a homomorphism
of aring R intothering R, and 0 € R, 0; € R; be the zero element of
R and R; then

f(0) =0,
f(-a) =-7(ad VaeR
fab)=rf(@-7(b) Va,beR

Example :- Consider the sings . S = {1 ij/a,belR} and

show that themap ¢ (a+hbi)= a ﬂ Isaring isomorphism.

Solution :- ¢:C — M,[IR]
¢(a+bi)={ a bl
-b aj
To show that ¢ is homomorphism
A = atbi B = c+di

¢ (A+B) = ¢ [a+ctbi+di]
_| a+c  b+d
“|=(b+d) (a+¢)

=¢(a+b)+d(c+di)

ac—hd ad +bc
d(A. B){ }
—(ad+bc) (ac+hbd)
|a bfjc d
|-b all-d ¢
==$(A)¢(B)
To show that ¢is1-1
¢(A) =¢(B)

#(a-+bi) = g(c+di)

a b |c d
R M
a=c,b=deatbi =c+di
To show that ¢ isonto

a b
F -M, (IR
-
There exists at b, ¢ € C such that
a b
bi) =
#(a+bi) [—b a}

Hence, themap ¢ (a+bi):[6:3 ﬂ Isaring isomorphism.
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13.8 LET USSUM UP

In this chapter we have learned
Algebraic structures with two binary operation.
Definition of ring.
Commutative ring and ring with zero divisor.
Integral domains and fields.
Ring homomorphism and isomorphism.

13.9 UNIT END EXERCISE

Q.1 Prove that the set | of all integers with ordinary addition and
multiplication as the compositions forms a ring.

Q.2 Show that the set of number given by x +y\/§ , where x and y
are integersis aring with ordinary addition and multiplication as the
two compositions.

Q.3 If E denotes the set of all even integers, then prove that {E, +, .}

isacommutative ring, where a.b :%b and + isthe usual addition.

Q.4 Show that the set of number of the form x +y J2 , x and y are
rational numbersisafield.

Q.5 Show that Z[\/E], the set of complex numbers x +y J5 where
X,y areintegers, iaan integral domain.

Q.6 Let ‘R’ isring with unity ‘e’. f :Z — R isamapping defined by
f (X)=xe VxeZ.Provethat f isring of homomorphism.

Q.7 Let f be the function from the integer Z onto the even integers
given by f(x) = 2x for all

X € Z. Prove that f is not a homomorphism.

13.10 REFERENCES FOR FURTHER READING

1. University Algebraby N.S. Gopalkrishnan.

2. Contemptary Algebraby Gallian.

3. Discrete mathematics by Kenneth and Rosen.

4. Discrete mathematical structures by Kolman, Busby and Ross.
5. Modern Algebra by Vasishtha.
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RECURRENCE RELATION

Unit Structure

14.0 Objectives

14.1 Introduction

14.2 Series

14.3 Sequences

14.4 Fibonacci

145 Generating functions

14.6 Recurrence relations

14.7 Applications of recurrence relations
148 Letussumup

14.9 Unit end exercise

14.10 Referencesfor further reading

14.0 OBJECTIVES

After going through this chapter you will be able to:
e Seriesand sequences.
Generating function.
Recurrence relation.
Thefirst order linear homogeneous recurrence relations.
The second order homogeneous linear recurrence relations.
The non-homogeneous relations.
The method of generating functions.
Applications.

141 INTRODUCTION:

We al know that the mathematical induction is a proof
technique that verifies a formula or assertion by inductively
checking its validity for increasing values of n. In a similar way, a
recurrence relation is a counting technique that solves an
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enumeration problem by recursively computing the answer for
successively larger values of n.

The concept of a generating function is one of the most useful
and basic concepts in the theory of combinatorial. The power of the
generating function rests upon its ability nor only to solve the kinds
of problems have we considered so far but also to aid us in new
situations where additional restrictions may be involved.

14.2 SEQUENCES:

A sequence is an ordered list of objects. A sequence is
denoted by {a,}, where a, represents n™ term of the sequence

(neN). If thelist terminates after some steps then we say sequence
isfinite otherwiseit is called as an infinite sequence.

Example:

(1) 3,4,5,6, 7,8, 9isafinite sequence, in this & =3, a, =4 and so
on.
(2)1, 4,9, 16, 25,... is an infinite sequence, in this & =1, a, =4,

a3=9,...
(3)-1,1,-1,1,... isaso aninfinite sequence & = -1, a, =1, ag=-1
(41, 3,7,... isaninfinite sequence.

In example (1) we can see that a, = +1, ag=a,+1 and so on i.e.
an+1 =ap*+1, where 3y =3 and n<7. Similarly in (4) we have,
an+1 = 2a,+1, where g =1.

A formula, like above is called as recursive formula, where
next term depends on previous term. A recursive formula must have
astarting value (i.e. &).

But in example (2), we have a,=(1)%, a, =(2)*, a =(3)° and so on
i.e. ap =(n)2 means value of 'a,,; does not depend on 'a,, such a

formula is called as Explicit formula. Similarly in (3), a, :(—1)n
valueof a, itis position number.

The set corresponding to a given sequence is the set of all
distinct elements of a given sequence.
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It can be finite or infinite.
For eg. (1) for a, = (—1)n , corresponding set = {-1, 1}.
(2) for a, =n+1, corresponding set = {2, 3, 4,...... }

The difference between set and sequence is, in a set order of
the elementsis not important but in a sequence order of the elements
isimportant.

A set is called countable if it is elements can be arranged in
order first, second, third etc. i.e. it is the set corresponding to some
sequence for example, set of Natural numbers, set of rational etc.

A set which is not countable is called as an uncountable set.
For example, set of Real Numbers.

Check your progress:
1. Write aformulafor n™ term and identify it is recursive or explicit.
111

@1===,.. (b) 1,0,1,0,1,0,...
2 34
(© 3,6,9,... (d) 2,5, 10, 17, 26
(e) 5, 25, 125,...
14.3 SERIES
An expression of the foma, + & + &g + ...... + a, +

.......... which is the sum of the elements of the sequence {a,} is
caled a series. If the series contains afinite number of elements, it is
called finite series, otherwise called an infinite series.

IfS=ag+tat+ta+...... + a,, then S, is called the sum of
n terms of the series and is denoted by the Greek letter sigma ..

Thus S, :Zn:an.

i=1
Example 1: Find the sum of first 20 natural numbers.

Solution: To find sum of first 20natural numbers.
i.e§,=1+2+3+4+....+20.

Herefirst term = a= 1 and the common difference=d =1

Bye arithmetic progression,

S = i%[.‘.‘a + (n—1)d]

==[2(1)+(20-1)1]

= 10[ 2 + 19]= 210.
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Check your progress:

1. Findthe sum of the series 2+4+6+8+10+............... +38.
2. Find the sum of the series 3+5+7+9+11+............... +53.
3. Find the sum of the series 3+7+11+15+................ +73.

14.4 FIBONACCI SEQUENCE:

The Fibonacci sequence is a set of nhumbers that starts with a
one and a zero, followed by a one , and proceed based on the rule
that each number is equal to the sum of the preceding two numbers
is called Fibonacci number and the sequence obtained is caled
Fibonacci sequence.

If Fibonacci sequence is denoted by F(n), where n is the first
term in the sequence, the following equation obtains for n=0,where
first two term are defined as 0 and 1 by convention.

F0)=0,1,1,223,5/8,13, ..........

14.5 GENERATING FUNCTIONS

Now we see some important polynomial expansions, which
are often used in this chapter.
Polynomial Identities
1_ Xn+l
1-x

1. =14+ X+ X+ X+ +X

2. i:1+x+x2+x3+ .........
1-x

3. 1+x)" :1+(njx+(an2+(njx3+ ........ +(nJX”
1 2 3 n

Definition: Let ag & &
function
f(x) = g+ ax + ax’+ _ =Yar
i=0
is called the ordinary generating function or generating function
for the given sequence.

..........

Example 2: Find the generating function for the binomial theorem .
Solution: Foranyn e Z*

u)(oj(l]@ ________________ (j

So (1+x)" isthe generating function for the sequence
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@, (J (2] ............... , (j

f(x)=(1+x)" isthe generating function for a’ =C(n,r), the number
of ways to select an r-subset of n-set.

Example 3: Find the coefficient of x> of generating function
(1-2x)".
Solution : Using the generating function for Maclaurin series.

Wewrite (1-2x)" =(1+y)”’ = i(_r?j(—Zx)r wherey = -2x.

r=0
Consequently, the coefficient of x° is

7 s ns[7+5-1)
(5J(—2X) =(-1 ( c j( 32)

11
= [ ; j (32) =14,784.

Check your progress:
1. Find the generating function for Maclaurin series. [ hint

f(x)=1+x)"]
(1_ Xn+l)
(1-x)
3. Determine the coefficient of x* of generating function
1
(x=3)(x-2)°

2. Find the generating function for

14.6 RECURRENCE RELATION

A recurrence relation is a recursive formula that counts the
number of ways to do a procedure involving n objects in terms of the
number of ways to do it with fewer objects. That is if a, is the
number of ways to do the procedure with r objects, for r=0, 1,
2, , then a recurrence relation is an equation that expresses a, as
some function of preceding a‘ s, k < n. A formal definition is given
after the following example.

A boy has a staircase of n stairs to climb. Each step it takes
can cover either one stair or two stairs. Find the number of different
ways for the boy to climb staircase.
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We solve this using recurrence relation.

(n-1)

(n-2)

] |

a2

Fig 14.1

Let a, be the number of different ways the boy can climb a staircase
with n stairs.

Thus

a=1, [onestep can be climbed in only one way]

=2, [1+1 that isin two steps or both stairsin single step]

=3, [1+1+1, 1+2 and 2+1]

etc.

to compute a,, the boy can reach n th stair with or without using n-1
th stair using n-1 th stairs he has a,, ways without using n-1 th stair
(asthe hasto use n-2 th stair) he has a,., ways.

Thus

= a1t a2

These numbers are well known Fibonacci numbers. Where n th term
is some of previous two terms such dependency gives us recurrence
relation which can be formally defined as:
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“A recurrence relation is a relation among the sequence (a,), n=0, 1,
2,....., of theformf(n, a &,....,.a,) =0foraln>k.”

Three simple example could be

Gh—a1&2=0, n=2, (1

& -a1=n, n=1 (2

8= &By1— &dn2-..m B @ =0, Nn>3. (3

is a linear homogeneous recurrence relation with constant
coefficients,

is a linear non-homogeneous recurrence relation with constant
coefficients,

isanon-linear recurrence relation, and aformal definition is below.
Letk €Z" and C, (#0), Cn1, Cnyevvvvnenn, Coi (# 0) be real number.
If a,, for n> 0, isadiscrete function , then

Cnan + Cn-lan-l + Cn-Zan-Z Tt Cn-kan-k = f(n)’ n= K )

Is a linear recurrence relation with constant coefficient of
order k. when f(n) = O for al n > O, the relation is caled
homogeneous; it is non homogenous.

146.1 THE FIRST — ORDERED LINEAR RECURRENCE
RELATION

A linear homogeneousrecurrence relation of the form,

an = 081

is called the first order homogeneous linear recurrence relation,
where a isa constant.

Since a, depends only on its immediate predecessor, the relation is
said to be first-order.

Now the above relation may be defined as the “first — order linear
homogenous recurrence relation with constant coefficients.

General solution
The general solution of the recurrence relation

8n = O 81 (4)

where o isaconstant, n> 1, and a= A , isunique and is given by
a&=Aa" (5)

The expression ag= A iscalled the initial condition .

Thus the solution a, = Aa. ", n> 1, defines a discrete function whose

domainisthe set N of all natural numbers.

Example 4: Solve therecurrence relation a,.; =3a,,n>0, a=>5.
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Solution:
Thefirst four terms of this sequence are
8= 5,
a; = 3a,=3(5) = 15,
&= 3a, = 3(3a) = 3?(5) , and
ag = 33, = 3(3°(5)) = 3%(5).

By using induction, we can easily verify that, the general solution is
a,=5(3") foreachn> 1.
In the general solution, the value of a,is a function of n and
there is no longer any dependence on prior terms of the sequence,
once the value of ayis known.

Example 5: Solve the recurrence relation a,= 7a,,, where n> 1 and
a=98.

Solution:
This is an alternative from of the recurrence relation ag.; = 7
a,forn>0and a,= 98.

From the above formula, we have the general solution a,= a,(7) "
Since a,= 98 = a,(7?) . Thisgives a,= 2.
Hence the general solution a,=2(7)", n> 0, is unique.

Example 6: A bank pays 6% annual interest on savings,
compounding the interest monthly. If a person deposits 1000/- , how
much will this deposit be worth a year |ater?

Solution:

We solve the above problem using the recurrence relation
concept as follows.

Let P, be the deposit at the end of n months.
Given
Po= 1000,

The rate of interest per annum is 6%, so the monthly rate =
6/12% = 0.005.

Now the recurrence relation for the deposit is,
Pn+1 = P + 0.005P, = Py(1.005)
Where 0.005P,, is the interest earned on P,, at the end of n the month.
The general solution for the recurrencerelation is
P, =Py (1.005)"
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Consequently the deposit at the end of 12 monthsis

P, = Py(1.005)%
= 1000(1.005)*
= 1061.68

14.6.2 Special Cases

Conversion of Non Liner to Linear: In alinear relation there are
no products such as a,a, ..., (see equation (1) in the definition of
recurrence relation at the beginning of this chapter) which appearsin
the non-linear relation, a1 — 3a,a,.1 = 0. However , there are times
when anonlinear recurrence relation can be transformed into a linear
one by a suitable algebraic substitution.

Example 7: Find ag if & = 68, , where a, > 0 forn> 0, and

=2

Solution:

Given the recurrence relation
a’ny = 68, Wherea, > 0forn>0,anda,=2 (6)
isnot alinear onein a,
But we transform (6) into linear with the substitution.
bn = a2n .
Then the new relation
bn+1 = 6bn forn>0, and bo =4, (7)
isalinear relation
Now the general solution for the new recurrence
relation (7) can be computed using the general solution
method discussed in this section 3.1.
Comparing (6) with equation (4), we observe that
a = 6 and the genera solution is
b= (a)"bo = (6)" 4.
Therefore  a,=2(y'6) " for n>1.
Consequently ag = 2(16)® = 2592

Example 8: Find ap, if awi® = 5a&° , where a, > 0 for n > 0 and

=2

Solution:

Thisis anon-linear recurrence relation. This can be converted into
linear by letting b, = a.2. This gives the new relation b,,1 = 5b, for
n> 0, and by =4 whichislinear.
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The general solutionisb, = 4(5)".
Therefore, a, = 2(15) " for n> 0.
Hence ay, = 2(,5) ¥ = 31,250.6

14.6.3 Non Homogeneous Relations. The genera first order linear
recurrence relation.
With constant coefficients has the form a,.; + ca, =f(n), n >0

where c is a constant and f(n) is a function on the set N of Non
negative integers.

Where f(n) = 0 for all n [J N, the relation is called homogeneous;

otherwise it is called non homogeneous. So far, we have dealt only
with homogeneous relations. Now we shall solve a non-
homogeneous relation.

Example 9: Find arecurrence relation and solve it for the following
sequence.

Solution:
0,2,6,12, 20, 30, 42...
Hear ap=0,a1 =2, a0 =6,a3 =12, a4, = 20, a5 = 30, ag
= 42, and we observe that
a;—ay =2,
a—a; =4,
a3—32:6,
ay—ag =8,
as —ay = 10,
ag—as =12,

These calculations suggest the recurrence relation.
ah—an1=2n,n=>1,a=0

To solve this relation, we proceed in adlightly different manner from
the method we used in the previous examples. Consider the
following n equation:

a1—a =2,

a—a; =4,

ap—an1=2n,
By adding the above n equations we get,
a—ap=0+2+6+8+...+2n
=2(1+2+3+...+n)
=2[n(n+1)/2] =n*+n
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Therefore the general solutionis
a,=n>+n.
With variable coefficients

We have seen and discussed various types of recurrence
relations, which are with constant coefficients. Now we see an
example of the type with variable coefficients in this section “ First
order recurrencerelations’.

Example 10: Solve therelation a, = n.a,, ,whenn>1anda;= 1
Solution: We solve this problem by proceeding as above but differ
in asmall manner.
Given the recurrence relation.
a,=na,;,whenn>1landay=1
Thefirst terms of therelation are
=1,
a=la=1,
a=2a =21,
az=3a,=321,
as=4,a3=4.3.2.1,
as=5,a,=54.3.2.1,
Therefore, a, = n!  And the solution is the discrete
function a,, which counts the number or permutations
of n objects, n>0.
We have seen the same counting principal in chapter 1
of this book in the permutations section.

1465 THE SECOND — ORDER LINEAR HOMOGENEOQOUS
RECURRENCE RELATION WITH CONSTANT
COEFFICIENTS

Hear we talk about the relations of particular case in which k = 2,
discussed in section 3.1, equation (3).
The relation of the from
Cnan + Cn-lan-l + Cn-Zan-Z =0 Nz 2 (8)
Is called the linear recurrence homogeneous relation with constant
coefficients of order 2.

General Solution
As per our discussion 3.1, we found the general solution of
the form
a,=cr" 9)
Wherec#0, r # 0.
Substituting (9) in (8) we get
C.cr” + crer™ + e =0 (10)
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Which becomes
Co%+ Coaf + Crp = 0. (11)
a quadratic equation of degree two called the characteristic
eguation.
Let the roots of the characteristic equation be r4, r,. Then the
following cases arise: roots may be
a. Didtincti.e.ry# ry,
b. Complex Conjugates or
c. Equal.
Note that to determine the unique solution of a second order linear
homogeneous recurrence relation with constant coefficients we need
to have two initia conditions, that is the value of a, for at least two
values of n.

Case (I) Roots are Distinct

Let the distinct roots be rq, r> and r; # r, Since the
genera solution of (8) is

a, = cr", wherer isthe root of equation (10), we have

a, — r? and a, = rf are both solutions to (8), and
linearly independent.

Therefore the general solution in thiscase is

1 o
an:C]_rl+C2r.,

Where ¢, ¢, are arbitrary constants.

Note that the solutions a, = rT and a, = r:"' linearly independent when

the following condition is satisfied.

»
L

Forc, c, eR if cor.

1 czr:': OforalneN,thenc,=c,=0.

We may find the unique solution by using the initial conditions and
eliminating the arbitrary constants.

Example 11: Solve the recurrence relation a, + a1 — 6a,, = 0,
wheren>2anday=-1 and a; = 8.

Solution:
Given the recurrence relation
a, + a1 —6a,,=0, wheren>2 (12
On substituting the general solution a, = cr", ¢,r # 0
andn>2in (12) weobtain
cr"+crt- 6er?=0
and the corresponding characteristic equation is
r’+r—6=0.
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Solving the characteristic equation.

r+r—6 =0
= (r+3)(r-2 =0
= r=2,-3.

Since we have two distinct real roots, the general solution is
= C1(2)" + cy(-3)"
Where ¢, ¢, are arbitrary constants.

The arbitrary constants are determined using the initial conditions as
follows:
-1 = a
=01(2)° + (-3’
=Gt C (13)
8 =
=0,(2)" + ¢(-3)’
=2¢; - 3¢, (14)
Solving (13) and (14) we find the values of the arbitrary constants as
ci=10c=-2

Case (I1) Complex Roots
Let the complex roots bery,r,. Since the general solution of (8) is
a, = cr", wherer isthe root of equation (10),

a, = r?l: and a, = r: are both solutions to (8), and

linearly independent as in the case(l). Therefore the
generd solutior_1 inthiscaseis

— n n
an—Clrl + Czr2

Where ¢, ¢, are arbitrary constants.
Sincerq, r, are complex roots (complex conjugates), let
these roots be
r.=a+ ibandr,=a-ib. now re writing the genera
solution we get

a,= ci(a+ ib) + c(a—ib) (15)

We may find the unique solution by using the initial
conditions and eliminating the arbitrary constants. And the linearly
independence asis case ()

Note that the solution contains no complex numbers.
Thisis demonstrated in the following example.

Example 12: Solve the recurrence relation a, = 2(an.1 — a,.»), where
n>2andag=1,a,=2.
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Solution:

Let the general solution be
a,=cr" forc,r#0.

Substituting the solution in the given recurrence

relation we get the characteristic equation.
r’-2r+2=0.

Solving the above equation we obtain the roots are
r=>1zi.

Now we have two independent solutions (1 +i)" and (1 —i)".

Therefore the general solutionis
an= C(1+ )"+ c(1—i)".

Where ¢, ¢, are arbitrary complex constants.

Using preliminary concept of complex analysis we rewrite the
genera solution without complex numbers and eliminate the
arbitrary constants using the initial conditions as follows.

1+i=+2(cos(n/4)+isin(m/4))

and

1+i=+2(cos(n/4)+isin(m/4)=+2(cos(n/4)-isin(rn/4))

Theseyields

an=Cy(1+ )"+ c(1—i)"

= cy(v2(cos(m / 4) + i sin(m / 4)))" + c,(+2(cos(n / 4)

-isin(z/ 4)"

= (V2)"(ci("(cos(nm / 4) + i sin(n / 4))) + c,((cos(nr
1 4) -isin(nt/ 4))))
= (+2)"(ky cos(nm / 4) + ky sin(nm / 4)).

Wherek; = ¢; + c,and ky = (c; — Cy)'.
1=ay=Kk; cos0 + k, sinO = kj.
2=a,=v2(cos(n/4) +kysin(n/4) =1+k,

Therefore
ki=1, k=1

The solution for the given initial conditionsisthen given by
a = (v2)" (cos(nm / 4) + sin(nmt / 4)), n>0.

Case (I11) Repeated Roots
Let therq, ro and ry = ry, in this case we say that the root of
multiplication 2. Since the general solution of (8) isa, = cr", wherer

is the root if equation (10), we have a, = } are both solution to (8).
But these two solutions are not linearly independent and we say
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these are dependent solution since one solution is obtained from the
other by just multiplying with 1, i.e. multiples of each other.

To find the general solution in this case is we need one more
independent solution.

Let the independent solution be £(n) r" where £(n) is not a
constant. Substituting this into the given relation yields a general
solution of the from

a,= cr"+ cnr”,
And we see thisin the example below.

Example 13: Solve the recurrence relation an.» = 4a,+1 — 4a,, where
n>0andag=1,a; =3.

Solution:

First we find the characteristic equation of the given relation
by letting the general solution be a, = cr", ¢, r # 0. This yields the
characteristic equation

r’—4r+4=0.

Solving the above equation we find roots, r = 2,2 the repeated
roots. Now the two dependent solutions are 2" and 2"
L et the independent solution be
A(n) 2"
Where £(n) is not a constant.
F(N+2)2"2 =4 f(n+ 1)2™- 4 f(n)2"
or
fn+2)=2f(n+1)- f(n).
Assuming that the general solution is f(n)
arbitrary constants a, b, with a# 0. Hear we choose a

an + b, for
1,b=0.

Therefore we find that f(n) = n satisfies the above equation.

So n2" is a second independent sol ution.
Now the general solution is of the form
a, = c2"+ c,n2"
Using theinitia condition, ag = 1, a; = 3 wefind that
a,=2"+ (1/2)n2",n>0.

146.6 THE NON-HOMOGENEOUS RECURRENCE
RELATION

A genera form of the non homogeneous first and second
order relations are
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an+ Cria,1 = F(n), n>1,C,;#0. (16)
ant Cridna + Croane= f(n), n=2C#0. (17)5
Where C,, C,,,are constants and £(n) is not identically zero.

General solution
There is no general method for solving non-homogeneous
relation, for certain functions f(n) we shall find a successful

technique.

A Special Case
When C,.; = -1in equation (16) we have
a=ap+ f(1)
a=a+ f(Q)=ap+ f(1) + (2
p=a+ () =ap+ f(1)+ (2 + (3

80= 20+ f(1) + FQ)+ F@)*+ .ot F) = a0+ 3T E (i),

We can solve this type relation in terms of n, if we can find s
. . i=n . /.
suitable summation formulaforZ:i:1 f(i).

Example 14:Solve the recurrence relation a, — a,.1 = 3n?, where n >
landay=7.

Solution: Hear £(n) = 3n* so the general solution is
a =) i),

=7+3) i,
n(n+1)(2n+1)
2

M ethod of undeter mined coefficients

This relies on associated homogeneous relation obtained by
replacing f(n) with zero.

=7+

Let an™™ denote the general solution for the associated homogenous,
relation and a«’” be a solution of the given non-homogeneous
relation, the term an” is called the particular solution. Then

an = a." + a.”isthe general solution of the given relation. We use
the form £(n) to suggest aform for an”

Here is the procedure to find genera solution in which £(n) = kr", k
isaconstant. Consider the non-homogeneous first — order relation.
a,+ Criana = k" n>1,Cn 1 #0.
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If rnis not a solution of the associated homogeneous relation.
an+ Crq8,1 = 0, then
(p) Ar

Where A is a constant. When r" is a solution of the associated
homogenous relation.

an® =Bnr",
For B a constant.

Now consider the case of the non-homogeneous second — order
relation

ant Cn-lan-l + Cn-Zan-Z = krn, n=> 2, Cn-2 # 0
Here we find that

a a® = Ar", A is a consgtant, if r" is not a solution of the
associated homogenous relation;

® =B B i if o ()
b. an” =Bnr’, Bisaconstant, if an™ = ¢;r" + c,r", wherer;
#r;and
(p) = n i (h)
c. an” =Cnr’, Cisaconstant, when an™ = (¢, + c,n)r™

Example 15: Solve the recurrence relation a, — 3a,.1 = 5(7"), where
n>1andag=2.

Solution:
Given the non homogenous relation
an— 3an.1 = 5(7"),
(18)
and
£(n) =5(7)".
The corresponding homogenous relation is

an—3a,1=0.
(19)

Solving (19), the genera solution for the homogenous
relationis

an® = o(3).
Let the particular solution of (18) be
(p) - C(3n)
A isaconstant and
£(n) =kr" =5(7)"
Now we have
an =A(7)
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Placing the particular solution in (18), we find that
A(7n)- 3A(7n-1) =5(7n),n>1

= 7A-3A=5(7)
= A = 35/4,
And

an'® = (35/4)7n
=(/4" n>o0.
The general solutionisa,= ¢(3") + (5 + 4)7™*
Using the initial condition a,=2 now, we find the value of the
arbitrary constant c,
2=a0
=c+(5/4) (7)
= C =-271/4.
Finally the unique general solution is
an =(5/4)7™* — (1/4)(3™°), n> 0.

Example 16:
Solve the recurrence relation a, — 3a,.1 = 5(3"), where
n>1andag=2.
Solution: Given the non homogenous relation
a, —3a,1 = 5(3"),
(20)
And
£(n) = 5(3)"
(21)
The corresponding homogenous relation is
an—3a,1=0.
Solving (21), the genera solution for the homogenous
relationis

an(h) = C(gn)
Here an™ gng 7(n) are not linearly independent. As a

result an®of the form Bn(3"). Substituting the
particular solution in the given relation we get
Bn(3") = 3B(n-1) (3" = 5(3")

Or

Bn-B(n-1) =5.
Therefore B = 5.
Hence

a,= an” 4 an®=(c+5n3",n>0.
With ay= 2, the general solution is
an=(2+5n)3"
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14.7 THE METHOD OF GENERATING FUNCTION

The title of this topic itself indicates that the assistance of
“Generating Function” in solving recurrence relation isinvolved.
Now we demonstrate the procedure to solve a given recurrence
relation with the help of generating function in the following
example in a systematic procedure.

Example 17: Solve the recurrence relation
an2—5a +6a,=2,n>0.
ap=3a, =7

Step 1

Multiply the given relation by x™"
subscript in the relation. This gives us

2 because n+2is largest

Step 2
Sum all the equations represented by the result in step (1) and we get

00 n+2 o0 n+2 o0 n+2 _ oo n+2
anoan+2x —SEn:Oaon +62nzoanx _2Zn=0X

Step 3
In order to have each of the subscripts on a match the corresponding
exponent on x, we rewrite the equation in step (2) as

o0 n+2 00 n+1 00 n_ »,2 o .n
anoan+zx _SXZn:OarH‘lx +6X2 anoanx = 2X Zn:OX

Step 4
Let f(x)= Zf‘ioan x" be the generating function for the solution.
The equation in step (3) now takes the form

(F(x) 20— ax—5x)( f (x) g + 6 f (x)ZZLZX
Or
(f (x)—3—7x—5x)(f (X)—3+6x2) ¢ (x):%
Step 5
Solving for f (x) we have
2x?

(1-5x+6x) f (X)=3—8x+——

 3-11x+10x?
1-xX




267

Form which it follows that
2
; (x): 3—11x+10x
(l— 5X 4 6x2)(1— X)
(3—5x)(1—2x)
- (1-3%)(1-2x) (1- )
3—5x
(1-3x)(1-x)
Partial fraction decomposition gives us
2 1
f(x)

+_
:222@@”+§;uf

T1o2x  1-x
Consequently, a, =2(3") + 1, n> 0,

Check your progress:

1.

The number of bacteria in a culture is 1000, and this number
increases 250% every two hours. Use a recurrence relation to
determine the number of bacteria present after one day.

If a person invests Rs.100 at 6% interest compounded quarterly,
how many months, must he wait for his money to double? (He
cannot withdraw his money before the quarter is up.)

A person invested the stock profits he received 15 yearsago in an
account that paid 8% interest compounded quarterly. If his
account now had Rs.7218.27 in it, what was his initia
investment?

Using generating functions solve the recurrence relation
ah—3a,1=n,n=0,a=1

Solve the recurrence relation
An+2 = Ane1 T A, nzO’aO:O’al:]-

Solve the recurrence relation
an+2—4a, + 3a,=-200, n> 0, ap = 3000, a; = 3300.
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14.8 LET SUM UP:

In this chapter, we have learnt the following.

Sequences and series.
Generating function and Example base on Binomia and
Maclaurin series.
A recurrence relation is a relation among the sequence (a,), n =
0,1,2,...,of theform £(n, a;, a,, ...,a,) =0for al n>k.
A linear homogenous recurrence relation of the form,
ad, = aadn-1
is called the first order homogenous linear recurrence relation,
where o is a constant.
The general solution of the recurrence relation a, = aa,., where a
isaconstant, n> 1, and ag = A, is unique and is given by a, =
Aa".
A general form of the non homogenous first and second order
relation are
an+ Chin1=f(n),n>1,C.1#0
an + Chaana+ Chodn2 = f(n), n=> 2,
Cn-2 75 03
Where C,1Cy.zis constantsand f (n) isnot identically zero.

Solving various recurrence relations and the method of
generating function.

14.9 UNIT END EXERCISE:

o~ wbdpE

N o

8.

Determine the coefficient x’ of generating function (1+3x)™°.
Solve a —a _,—a _,=-30 given a,=20,a =-5.

Solvea, —2a, ,+a ,=0.

Solve a -2a,,,+a,,=3 with a,=2,a =5.

Solve the recurrence relation a,+a,.1-6a,.,=0, n>2, and a,=-1 and
,=8.

Solve the recurrence relation a,..=4a,:1-4a, for n>2, ay=1, ay,=3.
Solve the recurrence relation a,-3a,.,=5(7") for n>1 and a,=2.
Solve the recurrence relation a,-3a,.,=5(3") for n>1 and a,=2.

9. Solve the relation a,:2-5a,+1+6a,=2, =0, 8,=3, ay=7.
10. Determine the coefficient x°of generating function (1-5x)2.
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